Development of an MRI‐Based Comprehensive Model Fusing Clinical, Radiomics and Deep Learning Models for Preoperative Histological Stratification in Intracranial Solitary Fibrous Tumor

医学 磁共振成像 精确检验 队列 放射科 核医学 接收机工作特性 卡帕 快速自旋回波 科恩卡帕 机器学习 外科 内科学 计算机科学 数学 几何学
作者
Xiaohong Liang,Kaiqiang Tang,Xiaoai Ke,Jian Jiang,Shenglin Li,Caiqiang Xue,Juan Deng,Xianwang Liu,Cheng Yan,Mingzi Gao,Junlin Zhou,Liqin Zhao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (2): 523-533 被引量:4
标识
DOI:10.1002/jmri.29098
摘要

Background Accurate preoperative histological stratification (HS) of intracranial solitary fibrous tumors (ISFTs) can help predict patient outcomes and develop personalized treatment plans. However, the role of a comprehensive model based on clinical, radiomics and deep learning (CRDL) features in preoperative HS of ISFT remains unclear. Purpose To investigate the feasibility of a CRDL model based on magnetic resonance imaging (MRI) in preoperative HS in ISFT. Study Type Retrospective. Population Three hundred and ninety‐eight patients from Beijing Tiantan Hospital, Capital Medical University (primary training cohort) and 49 patients from Lanzhou University Second Hospital (external validation cohort) with ISFT based on histopathological findings (237 World Health Organization [WHO] tumor grade 1 or 2, and 210 WHO tumor grade 3). Field Strength/Sequence 3.0 T/T1‐weighted imaging (T1) by using spin echo sequence, T2‐weighted imaging (T2) by using fast spin echo sequence, and T1‐weighted contrast‐enhanced imaging (T1C) by using two‐dimensional fast spin echo sequence. Assessment Area under the receiver operating characteristic curve (AUC) was used to assess the performance of the CRDL model and a clinical model (CM) in preoperative HS in the external validation cohort. The decision curve analysis (DCA) was used to evaluate the clinical net benefit provided by the CRDL model. Statistical Tests Cohen's kappa, intra‐/inter‐class correlation coefficients (ICCs), Chi‐square test, Fisher's exact test, Student's t ‐test, AUC, DCA, calibration curves, DeLong test. A P value <0.05 was considered statistically significant. Results The CRDL model had significantly better discrimination ability than the CM (AUC [95% confidence interval, CI]: 0.895 [0.807–0.912] vs. 0.810 [0.745–0.874], respectively) in the external validation cohort. The CRDL model can provide a clinical net benefit for preoperative HS at a threshold probability >20%. Data Conclusion The proposed CRDL model holds promise for preoperative HS in ISFT, which is important for predicting patient outcomes and developing personalized treatment plans. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chiaoyin999应助猪猪hero采纳,获得10
1秒前
丰富雅容完成签到 ,获得积分10
1秒前
cqsuper完成签到,获得积分10
4秒前
王天天完成签到 ,获得积分10
8秒前
轻松笙发布了新的文献求助10
8秒前
摔碎玻璃瓶完成签到,获得积分10
9秒前
jinxuan完成签到,获得积分10
10秒前
10秒前
汉堡包应助gunanshu采纳,获得10
11秒前
12秒前
科研通AI2S应助朱莉采纳,获得10
13秒前
棉花不是花完成签到,获得积分10
16秒前
有终完成签到 ,获得积分10
18秒前
19秒前
科目三应助清风明月采纳,获得10
23秒前
23秒前
白开水完成签到,获得积分10
25秒前
25秒前
静默关注了科研通微信公众号
25秒前
情怀应助肖博文采纳,获得10
26秒前
Hello应助Andy采纳,获得10
27秒前
大成子发布了新的文献求助10
27秒前
奥斯卡发布了新的文献求助10
29秒前
星辰大海应助白开水采纳,获得10
29秒前
清秀的发夹完成签到,获得积分10
29秒前
落后醉易发布了新的文献求助10
30秒前
abc97完成签到,获得积分10
32秒前
顺鑫完成签到 ,获得积分10
33秒前
ldh032应助QR采纳,获得10
35秒前
所所应助QR采纳,获得10
35秒前
ldh032应助候默——辛普森采纳,获得10
35秒前
35秒前
归尘应助珊珊采纳,获得10
38秒前
Andy发布了新的文献求助10
39秒前
40秒前
40秒前
Doc_Ocean完成签到,获得积分10
40秒前
NexusExplorer应助细草微风岸采纳,获得10
42秒前
魏1122完成签到,获得积分10
42秒前
孤月笑清风完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339