Pan-sharpening via conditional invertible neural network

锐化 计算机科学 人工智能 图像(数学) 人工神经网络 模式识别(心理学) 失真(音乐) 计算机视觉 计算机网络 放大器 带宽(计算)
作者
Jiaming Wang,Tao Lü,Xiao Huang,Ruiqian Zhang,Xiaoxiao Feng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:101: 101980-101980 被引量:19
标识
DOI:10.1016/j.inffus.2023.101980
摘要

In the realm of conventional deep-learning-based pan-sharpening approaches, there has been an ongoing struggle to harmonize the input panchromatic (PAN) and multi-spectral (MS) images across varied channels. Existing methods have often been stymied by spectral distortion and an inadequate texture representation. To address these limitations, we present an innovative constraint-based image generation strategy tailored for the pan-sharpening task. Our method employs a multi-scale conditional invertible neural network, named PSCINN, which is capable of converting the ground truth MS image into a downscaled MS image and a latent variable, all under the guidance of the PAN image. Subsequently, the resampled latent variable, obtained from a prior distribution, and the low-resolution MS image are harnessed to predict the pan-sharpened image in an information-preserving manner, with the PAN image providing essential guidance during the reversion process. Furthermore, we meticulously architect a conditional invertible block to construct a Jacobian Determinant for the spectral information recovery. This structure effectively pre-processes the conditioning PAN image into practical texture information, thereby preventing the spectral information in the pan-sharpened result from potential contamination. The proposed PSCINN outperforms existing state-of-the-art pan-sharpening methodologies, both in terms of objective and subjective results. Post-treatment experiments underscore a substantial enhancement in the perceived quality attributed to our method. The source code for PSCINN will be accessible at https://github.com/jiaming-wang/PSCINN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助Rolo采纳,获得10
刚刚
刚刚
云墨完成签到,获得积分10
刚刚
故意的冰岚完成签到,获得积分20
1秒前
景磬发布了新的文献求助10
1秒前
彭于彦祖应助虎虎虎采纳,获得10
2秒前
kai完成签到,获得积分10
2秒前
2秒前
3秒前
SYLH应助心在鹿上采纳,获得10
3秒前
3秒前
莫离完成签到,获得积分10
3秒前
阿拉蕾完成签到,获得积分20
3秒前
元小夏完成签到,获得积分10
4秒前
华西招生版完成签到,获得积分10
4秒前
红小豆发布了新的文献求助10
4秒前
5秒前
kkk完成签到,获得积分20
5秒前
6秒前
6秒前
badada完成签到,获得积分10
7秒前
独立江湖女完成签到 ,获得积分10
7秒前
阿拉蕾发布了新的文献求助10
7秒前
7秒前
8秒前
Jiangcm发布了新的文献求助10
8秒前
8秒前
猪血糕yu完成签到,获得积分10
8秒前
沐风发布了新的文献求助10
9秒前
高贵语海完成签到,获得积分10
9秒前
元羞花完成签到,获得积分10
10秒前
谢亚飞完成签到,获得积分20
11秒前
12秒前
12秒前
12秒前
sherrt发布了新的文献求助10
12秒前
暴躁的兔子完成签到,获得积分10
13秒前
LHNini发布了新的文献求助10
13秒前
帅气的宽发布了新的文献求助10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813