Poultry fecal imagery dataset for health status prediction: A case of South-West Nigeria

家禽养殖 计算机科学 预处理器 分割 人工智能 业务 兽医学 医学
作者
Halleluyah Oluwatobi Aworinde,Segun Adebayo,Akinwale O. Akinwunmi,O. Alabi,A. Ayandiji,Aderonke Busayo Sakpere,Abel Kolawole Oyebamiji,Oke Olaide,Ezenma Kizito,Abayomi J. Olawuyi
出处
期刊:Data in Brief [Elsevier BV]
卷期号:50: 109517-109517 被引量:6
标识
DOI:10.1016/j.dib.2023.109517
摘要

Feces is one quick way to determine the health status of the birds and farmers rely on years of experience as well as professionals to identify and diagnose poultry diseases. Most often, farmers lose their flocks as a result of delayed diagnosis or a lack of trustworthy experts. Prevalent diseases affecting poultry birds may be quickly noticed from image of poultry bird's droppings using artificial intelligence based on computer vision and image analysis. This paper provides description of a dataset of both healthy and unhealthy poultry fecal imagery captured from selected poultry farms in south-west of Nigeria using smartphone camera. The dataset was collected at different times of the day to account for variability in light intensity and can be applied in machine learning models development for abnormality detection in poultry farms. The dataset collected is 19,155 images; however, after preprocessing which encompasses cleaning, segmentation and removal of duplicates, the data strength is 14,618 labeled images. Each image is 100 by 100 pixels size in jpeg format. Additionally, computer vision applications like picture segmentation, object detection, and classification can be supported by the dataset. This dataset's creation is intended to aid in the creation of comprehensive tools that will aid farmers and agricultural extension agents in managing poultry farms in an effort to minimize loss and, as a result, optimize profit as well as the sustainability of protein sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Ricky采纳,获得10
1秒前
SciGPT应助柒z采纳,获得10
2秒前
zzcres发布了新的文献求助10
2秒前
故意的白开水完成签到,获得积分10
2秒前
3秒前
4秒前
lokiuiw完成签到,获得积分10
4秒前
manforfull完成签到,获得积分10
5秒前
深情安青应助听风者采纳,获得10
6秒前
2280479391完成签到,获得积分10
7秒前
7秒前
Fan完成签到,获得积分10
7秒前
Nemo完成签到 ,获得积分10
8秒前
8秒前
kcmat完成签到,获得积分20
8秒前
完美听南发布了新的文献求助10
9秒前
谢奕完成签到,获得积分10
9秒前
YT发布了新的文献求助10
11秒前
桐桐应助YY采纳,获得10
11秒前
阮大帅气完成签到,获得积分10
12秒前
13秒前
英姑应助wgt采纳,获得10
15秒前
鸣笛应助科研通管家采纳,获得30
17秒前
dlm完成签到,获得积分10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得20
17秒前
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得20
18秒前
18秒前
西渡朝朝完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
Magnum Contact Sheets 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897154
求助须知:如何正确求助?哪些是违规求助? 3441049
关于积分的说明 10819649
捐赠科研通 3165972
什么是DOI,文献DOI怎么找? 1749137
邀请新用户注册赠送积分活动 845123
科研通“疑难数据库(出版商)”最低求助积分说明 788429