Machine Learning based Estimation of Column Averaged CO2 from OCO-2 Satellite Data

卫星 栏(排版) 估计 计算机科学 遥感 人工智能 地质学 电信 工程类 航空航天工程 帧(网络) 系统工程
作者
Kamal Das,Ranjini Guruprasad,Manikandan Padmanaban
标识
DOI:10.1109/igarss52108.2023.10283342
摘要

Excessive levels of carbon dioxide (CO 2 ) in the atmosphere contributes to global temperature rise, and efforts are being made to limit this increase to ensure the safety of Earth's inhabitants. Satellites like GOSAT-2 and OCO-2 provide global-scale monitoring of atmospheric CO 2 levels. However, cloud and aerosol occlusion result in missing data, and the spatial and temporal resolutions of these measurements are coarse. Addressing these limitations is crucial for leveraging satellite-based global CO 2 monitoring to identify CO 2 sources and sinks and understand their spatio-temporal evolution. In this study, we employ machine learning techniques to estimate column-averaged CO 2 (XCO 2 ) from level 2 (L2) XCO 2 estimates obtained from the OCO-2 satellite, and daily XCO 2 data generated using Fixed Rank Krigging (FRK) at a spatial resolution of 1 0 x1 0 is used as the target variable. Meteorological variables, known to strongly influence XCO 2 distribution, are considered as covariates in the machine learning framework. To validate our estimates, we compare them with measurements from the Total Carbon Column Observing Network (TCCON) sensors. Additionally, we compare our estimates with those obtained from FRK and GEOS-L3 data. The validation against TCCON measurements and the comparison with existing data sources contribute to the evaluation and reliability of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助独特听芹采纳,获得10
刚刚
希望天下0贩的0应助耳冉采纳,获得10
刚刚
cherrychou完成签到,获得积分10
刚刚
干净的厉发布了新的文献求助20
刚刚
李健的小迷弟应助qwe采纳,获得10
刚刚
星辰大海应助小鹅采纳,获得10
1秒前
1秒前
CipherSage应助阿九采纳,获得10
1秒前
牛超发布了新的文献求助10
1秒前
1秒前
2秒前
研友_Z314mL完成签到 ,获得积分10
2秒前
bestlsy完成签到,获得积分10
3秒前
张莹莹发布了新的文献求助10
4秒前
猪江黎学者完成签到,获得积分10
4秒前
orixero应助li采纳,获得10
5秒前
5秒前
6秒前
6秒前
一一完成签到,获得积分10
7秒前
CipherSage应助玄天明月采纳,获得10
7秒前
希望天下0贩的0应助小鹅采纳,获得10
7秒前
mange完成签到 ,获得积分10
8秒前
小蘑菇应助cheryl采纳,获得10
8秒前
8秒前
kirito发布了新的文献求助10
9秒前
9秒前
9秒前
JamesPei应助杜可欣采纳,获得10
9秒前
10秒前
浮游应助bestlsy采纳,获得10
10秒前
好蓝发布了新的文献求助10
10秒前
10秒前
祁i发布了新的文献求助10
10秒前
善良的远锋完成签到,获得积分10
11秒前
发嗲的雨筠完成签到,获得积分10
12秒前
少艾发布了新的文献求助10
12秒前
慕青应助xh采纳,获得10
13秒前
pancake发布了新的文献求助30
13秒前
沧海一兰完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263289
求助须知:如何正确求助?哪些是违规求助? 4423914
关于积分的说明 13771219
捐赠科研通 4298936
什么是DOI,文献DOI怎么找? 2358826
邀请新用户注册赠送积分活动 1355088
关于科研通互助平台的介绍 1316312