亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prognostic Models for Mortality and Morbidity in Heart Failure With Preserved Ejection Fraction

医学 射血分数 心力衰竭 射血分数保留的心力衰竭 心脏病学 内科学 缬沙坦 厄贝沙坦 重症监护医学 血压
作者
Kirsty McDowell,Toru Kondo,Atefeh Talebi,Ken Teh,Erasmus Bachus,Rudolf A. de Boer,Ross T. Campbell,Brian Claggett,Ashkay S. Desai,Kieran F. Docherty,Adrian F. Hernandez,Silvio E. Inzucchi,Mikhail Kosiborod,Carolyn S.P. Lam,Felipe A. Martínez,Joanne Simpson,Muthiah Vaduganathan,Pardeep S. Jhund,Scott D. Solomon,John J.V. McMurray
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:9 (5): 457-457 被引量:30
标识
DOI:10.1001/jamacardio.2024.0284
摘要

Importance Accurate risk prediction of morbidity and mortality in patients with heart failure with preserved ejection fraction (HFpEF) may help clinicians risk stratify and inform care decisions. Objective To develop and validate a novel prediction model for clinical outcomes in patients with HFpEF using routinely collected variables and to compare it with a biomarker-driven approach. Design, Setting, and Participants Data were used from the Dapagliflozin Evaluation to Improve the Lives of Patients With Preserved Ejection Fraction Heart Failure (DELIVER) trial to derive the prediction model, and data from the Angiotensin Receptor Neprilysin Inhibition in Heart Failure With Preserved Ejection Fraction (PARAGON-HF) and the Irbesartan in Heart Failure With Preserved Ejection Fraction Study (I-PRESERVE) trials were used to validate it. The outcomes were the composite of HF hospitalization (HFH) or cardiovascular death, cardiovascular death, and all-cause death. A total of 30 baseline candidate variables were selected in a stepwise fashion using multivariable analyses to create the models. Data were analyzed from January 2023 to June 2023. Exposures Models to estimate the 1-year and 2-year risk of cardiovascular death or hospitalization for heart failure, cardiovascular death, and all-cause death. Results Data from 6263 individuals in the DELIVER trial were used to derive the prediction model and data from 4796 individuals in the PARAGON-HF trial and 4128 individuals in the I-PRESERVE trial were used to validate it. The final prediction model for the composite outcome included 11 variables: N-terminal pro–brain natriuretic peptide (NT-proBNP) level, HFH within the past 6 months, creatinine level, diabetes, geographic region, HF duration, treatment with a sodium-glucose cotransporter 2 inhibitor, chronic obstructive pulmonary disease, transient ischemic attack/stroke, any previous HFH, and heart rate. This model showed good discrimination (C statistic at 1 year, 0.73; 95% CI, 0.71-0.75) in both validation cohorts (C statistic at 1 year, 0.71; 95% CI, 0.69-0.74 in PARAGON-HF and 0.75; 95% CI, 0.73-0.78 in I-PRESERVE) and calibration. The model showed similar discrimination to a biomarker-driven model including high-sensitivity cardiac troponin T and significantly better discrimination than the Meta-Analysis Global Group in Chronic (MAGGIC) risk score (C statistic at 1 year, 0.60; 95% CI, 0.58-0.63; delta C statistic, 0.13; 95% CI, 0.10-0.15; P < .001) and NT-proBNP level alone (C statistic at 1 year, 0.66; 95% CI, 0.64-0.68; delta C statistic, 0.07; 95% CI, 0.05-0.08; P < .001). Models derived for the prediction of all-cause and cardiovascular death also performed well. An online calculator was created to allow calculation of an individual’s risk. Conclusions and Relevance In this prognostic study, a robust prediction model for clinical outcomes in HFpEF was developed and validated using routinely collected variables. The model performed better than NT-proBNP level alone. The model may help clinicians to identify high-risk patients and guide treatment decisions in HFpEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
纯情的白开水完成签到 ,获得积分10
5秒前
杨杨应助67n采纳,获得10
5秒前
Criminology34应助67n采纳,获得10
5秒前
沉默的倔驴应助67n采纳,获得10
6秒前
pluto应助67n采纳,获得10
6秒前
6秒前
Udo完成签到,获得积分10
7秒前
隐形曼青应助hsx采纳,获得30
8秒前
14秒前
细心盼晴发布了新的文献求助10
19秒前
张小明完成签到,获得积分10
32秒前
33秒前
hu发布了新的文献求助30
38秒前
hu完成签到,获得积分10
44秒前
48秒前
siqilinwillbephd完成签到,获得积分10
51秒前
香蕉觅云应助shinn采纳,获得10
51秒前
张小明发布了新的文献求助10
1分钟前
1分钟前
追寻友桃完成签到,获得积分10
1分钟前
1分钟前
1分钟前
追寻友桃发布了新的文献求助10
1分钟前
1分钟前
孙泉完成签到,获得积分10
1分钟前
bkagyin应助孙泉采纳,获得10
1分钟前
张小明关注了科研通微信公众号
1分钟前
科研通AI6.1应助夜夜景采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Rr发布了新的文献求助10
1分钟前
qqx发布了新的文献求助10
1分钟前
研友_VZG7GZ应助耕云钓月采纳,获得10
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772479
求助须知:如何正确求助?哪些是违规求助? 5598976
关于积分的说明 15429712
捐赠科研通 4905414
什么是DOI,文献DOI怎么找? 2639398
邀请新用户注册赠送积分活动 1587319
关于科研通互助平台的介绍 1542182