神经病理性疼痛
芳香烃受体
神经损伤
麻醉
药理学
医学
动物模型
神经科学
化学
生物
内科学
生物化学
基因
转录因子
作者
Meei‐Ling Sheu,Liang-Yi Pan,Jason P. Sheehan,Meng‐Yin Yang,Hung-Chuan Pan
标识
DOI:10.3390/ijms231911255
摘要
Neuropathic pain is well known to occur after damage to the somatosensory system. Aryl hydrocarbon receptor (AhR) has neuroprotective effects when the central nervous system is subjected to internal and external stimulations. However, the exact mechanism by which AhR regulates neuropathic pain is poorly understood. Nerve explant culture and the chronic constrictive nerve injury (CCI) model in wild or AhR-knockout mice were used in this study. In the nerve explant culture, the ovoid number increased in the AhR−/− condition and was decreased by omeprazole (AhR agonist) in a dose-dependent manner. Increased nerve degeneration and the associated inflammation response appeared in the AhR−/− condition, and these changes were attenuated by omeprazole. High expression of AhR in the injured nerve was noted after CCI. Deletion of AhR aggravated nerve damages and this was restored by omeprazole. Deletion of AhR increased NGF expression and reduced axon number in the paw skin, but this was attenuated by omeprazole. A highly expressed inflammation reaction over the dorsal spinal cord, somatosensory cortex, and hippocampus was noted in the AhR-deleted animals. Administration of omeprazole attenuated not only the inflammatory response, but also the amplitude of somatosensory evoked potential. Deletion of AhR further aggravated the neurobehavior compared with the wild type, but such behavior was attenuated by omeprazole. Chronic constrictive nerve injury augmented AhR expression of the injured nerve, and AhR deletion worsened the damage, while AhR agonist omeprazole counteracted such changes. AhR agonists could be potential candidates for neuropathic pain treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI