Harvesting Insights: AI-Driven Rice Yield Predictions and Big Data Analytics in Agriculture

大数据 分析 农业 计算机科学 产量(工程) 数据科学 数据分析 农业工程 数据挖掘 工程类 地理 物理 热力学 考古
作者
Cheikh Abdelkader Ahmed Telmoud
标识
DOI:10.3390/proceedings2024105023
摘要

This paper explores the transformative potential of artificial intelligence (AI) and big data analytics in predicting rice yields within the agricultural domain. By employing advanced algorithms and innovative methodologies, our study aims to contribute to the optimization of crop management strategies, providing a glimpse into the future of sustainable agriculture. The integration of AI and big data analytics allows us to unveil novel insights into rice yield predictions, emphasizing their broader implications for global food security. Our optimized Random Forest Regression model exhibited impressive results, with a Mean Forecasting Error (MFE) of 0.0001, a Mean Absolute Error (MAE) of 0.00016, a Mean Square Error (MSE) of 0.000014, and a Root-Mean-Square Error (RMSE) of 0.003. Our innovative methodologies involve combining climatic data, rice yield from previous seasons, and cultivated areas as input variables for prediction models. Additionally, we employ advanced optimization methods such as Optuna and Hyperopt to enhance our model. The integration of AI with big data analytics into rice yield predictions aids in preparing the data to achieve high quality before applying our models. This includes selecting optimal features and simulating our model with generated data to ensure it avoids overfitting. The potential of our approach has led to the creation of a digital agricultural twin for monitoring, analyzing, and visualizing data provided by sensors installed on a farm in Rosso during the study period. Looking forward, this digital twin enhances precision agriculture practices, contributing to sustainable farming and global food security. As a future perspective, we aim to create an intelligent system using our models and integrate IoT technologies to expose our model results as a service. We plan to publish the first Mauritanian agricultural database for other researchers to use in their future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jun发布了新的文献求助20
刚刚
helium发布了新的文献求助10
刚刚
科研通AI5应助青鸟采纳,获得10
2秒前
Orange应助jmchen采纳,获得10
2秒前
万能图书馆应助赫连紫采纳,获得10
2秒前
lee发布了新的文献求助10
3秒前
3秒前
Olivia发布了新的文献求助10
4秒前
view关注了科研通微信公众号
5秒前
科研通AI5应助飘逸书易采纳,获得10
5秒前
传奇3应助MrX采纳,获得10
5秒前
bkagyin应助Os1采纳,获得30
8秒前
mmmm完成签到,获得积分10
8秒前
8秒前
JamesPei应助Conccuc采纳,获得10
9秒前
10秒前
Lds发布了新的文献求助10
11秒前
12秒前
绿毛怪完成签到,获得积分10
12秒前
helium完成签到,获得积分10
12秒前
宋琪琪完成签到,获得积分10
13秒前
14秒前
七七七发布了新的文献求助10
14秒前
14秒前
莫道雪落奈何完成签到,获得积分10
15秒前
循环bug发布了新的文献求助10
15秒前
丘比特应助自然松采纳,获得10
16秒前
17秒前
18秒前
飘逸书易发布了新的文献求助10
20秒前
view发布了新的文献求助10
21秒前
科研通AI5应助w123采纳,获得10
21秒前
22秒前
汉堡包应助YAOYAO采纳,获得10
23秒前
23秒前
田様应助ZHY采纳,获得10
24秒前
五十一完成签到 ,获得积分10
24秒前
25秒前
25秒前
落后的听双完成签到 ,获得积分10
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225