Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review

嗅觉系统 传感器阵列 电子鼻 计算机科学 人工智能 纳米技术 模式识别(心理学) 材料科学 机器学习 生物 神经科学
作者
Chuntae Kim,Kyung Kwan Lee,Moon Sung Kang,Dong‐Myeong Shin,Jin‐Woo Oh,Chang‐Soo Lee,Dong‐Wook Han
出处
期刊:Biomaterials Research [BioMed Central]
卷期号:26 (1) 被引量:76
标识
DOI:10.1186/s40824-022-00287-1
摘要

Abstract Artificial olfactory sensors that recognize patterns transmitted by olfactory receptors are emerging as a technology for monitoring volatile organic compounds. Advances in statistical processing methods and data processing technology have made it possible to classify patterns in sensor arrays. Moreover, biomimetic olfactory recognition sensors in the form of pattern recognition have been developed. Deep learning and artificial intelligence technologies have enabled the classification of pattern data from more sensor arrays, and improved artificial olfactory sensor technology is being developed with the introduction of artificial neural networks. An example of an artificial olfactory sensor is the electronic nose. It is an array of various types of sensors, such as metal oxides, electrochemical sensors, surface acoustic waves, quartz crystal microbalances, organic dyes, colorimetric sensors, conductive polymers, and mass spectrometers. It can be tailored depending on the operating environment and the performance requirements of the artificial olfactory sensor. This review compiles artificial olfactory sensor technology based on olfactory mechanisms. We introduce the mechanisms of artificial olfactory sensors and examples used in food quality and stability assessment, environmental monitoring, and diagnostics. Although current artificial olfactory sensor technology has several limitations and there is limited commercialization owing to reliability and standardization issues, there is considerable potential for developing this technology. Artificial olfactory sensors are expected to be widely used in advanced pattern recognition and learning technologies, along with advanced sensor technology in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助佟杰采纳,获得20
2秒前
chen完成签到,获得积分10
2秒前
鸣蜩阿六完成签到,获得积分10
2秒前
SciGPT应助悠雯采纳,获得10
3秒前
3秒前
小王完成签到,获得积分10
3秒前
WY完成签到,获得积分10
4秒前
ljy发布了新的文献求助10
5秒前
6秒前
pancake应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
zfh完成签到,获得积分10
7秒前
7秒前
小马甲应助科研通管家采纳,获得20
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
lgq12697应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
MAVS完成签到,获得积分10
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
十四完成签到 ,获得积分10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助迷人芫采纳,获得10
8秒前
尉迟希望应助nora采纳,获得20
8秒前
美好斓应助科研通管家采纳,获得100
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
lgq12697应助科研通管家采纳,获得10
9秒前
乐乐应助杨晓白采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070231
求助须知:如何正确求助?哪些是违规求助? 4291424
关于积分的说明 13370277
捐赠科研通 4111739
什么是DOI,文献DOI怎么找? 2251660
邀请新用户注册赠送积分活动 1256787
关于科研通互助平台的介绍 1189405