Energy generation mechanisms for a Li-ion cell in case of thermal explosion: A review

核工程 热的 能量(信号处理) 离子 材料科学 工程物理 化学 热力学 工程类 物理 量子力学 有机化学
作者
Yih-Wen Wang,Chi‐Min Shu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:55: 105501-105501 被引量:11
标识
DOI:10.1016/j.est.2022.105501
摘要

Lithium-ion batteries (LIBs) are widely recognized as advanced energy storage systems (ESSs) due to their enhanced power capacity, extensive charging–discharging efficiency, and extended lifespan. However, the chemical and electrochemical interactions resulting in the uncontrolled exothermic reaction of LIB components should be considered when numerous fire or explosive incidents occur sporadically worldwide. Due to the characteristics of these active materials, an improved understanding of their thermal instability, their thermokinetic mechanisms when an LIB powers an electric system, and especially their reactivity is required as an alternative goal of proactive loss prevention. Calorimetric tests and thermal analysis techniques are introduced to determine an LIB's electrochemical and chemical reactions, which include the interaction among active components, thermal decomposition, and short circuits. The heat accumulation of an LIB affected by its components can result in a thermal explosion. Analytical thermokinetic equations are proposed to determine LIBs' exothermic reaction and create a self-heating model. The knowledge of an LIB's complex electrochemical and chemical reactions in case of thermal runaway from the calorimetry is subjected to fires or explosions. The advanced ESS of LIBs requires a proper thermal management system and a feasible, safe design. • The LIB megapack used in an EV or ESS has an emerging fire concern. • The thermal runaway to explosion transition of an LIB is related to temperature. • Thermal explosion energy involves heat and blast waves for energetic LIBs. • Calorimetry and thermokinetic analysis provide safety evaluation on LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独夜安完成签到,获得积分10
1秒前
1秒前
一木完成签到 ,获得积分10
1秒前
幽默的妍完成签到 ,获得积分10
1秒前
1秒前
2秒前
Jayee发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
3秒前
3秒前
俭朴灵枫关注了科研通微信公众号
3秒前
静一发布了新的文献求助10
4秒前
Alan发布了新的文献求助10
4秒前
凤凰院凶真完成签到,获得积分10
4秒前
5秒前
Glufo完成签到,获得积分10
6秒前
6秒前
7秒前
Orange应助八度浮采纳,获得10
7秒前
7秒前
ooa4321完成签到,获得积分10
7秒前
8秒前
热心市民小红花应助xiaosu采纳,获得10
8秒前
9秒前
9秒前
我是老大应助噜啦噜啦采纳,获得10
9秒前
9秒前
畅快乐天发布了新的文献求助10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
tea完成签到,获得积分10
12秒前
崔小乐发布了新的文献求助10
13秒前
CC完成签到,获得积分10
13秒前
李健的小迷弟应助Aman采纳,获得10
13秒前
可爱的函函应助chloe采纳,获得10
13秒前
亚马孙发布了新的文献求助10
14秒前
14秒前
lbt发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861608
求助须知:如何正确求助?哪些是违规求助? 3404020
关于积分的说明 10637676
捐赠科研通 3127156
什么是DOI,文献DOI怎么找? 1724551
邀请新用户注册赠送积分活动 830510
科研通“疑难数据库(出版商)”最低求助积分说明 779220