材料科学
电解质
锌
聚合物
多孔性
聚合物电解质
离子
化学工程
无机化学
纳米技术
电极
冶金
有机化学
复合材料
离子电导率
化学
物理化学
工程类
作者
Ruihe Yu,Yu Ma,Ning Zhang,Tianyu Qiu,Qing Jiang,Guangshan Zhu
出处
期刊:PubMed
日期:2025-08-08
卷期号:: e11029-e11029
标识
DOI:10.1002/adma.202511029
摘要
Solid polymer electrolytes (SPEs) are vital for zinc-ion solid-state batteries (ZSSBs) for dendrite suppression but face low-temperature hurdles from poor ionic conductivity and crystallization. Here, a supramolecularly engineered SPE is constructed by in situ polymerization of 2-ethyl-2-oxazoline (EtOx) within sulfonated porous aromatic frameworks (SPAFs), acting as macroinitiators and nanoconfined reactors. Resulting poly(2-ethyl-2-oxazoline) (PEtOx) chains assemble with the SPAF via strong non-covalent interactions, forming cohesive SPAF-PEtOx (SPP) with interconnected ion transport pathways. -SO3 - groups anchor Zn2+, while confined PEtOx chains modulate solvation dynamics, facilitating efficient Zn2+ migration. SPE based on SPP embedded in polyvinylidene fluoride (PVDF) matrices (SPP@PVDF) achieves high ionic conductivity (5.04 × 10-4 s cm-1) and a wide electrochemical window (2.74 V) at room temperature. A Zn || Zn symmetric battery exhibits stable plating/stripping over 3000 h, while a full Zn || V2O5 battery retains capacity over 1000 cycles at -40 °C with no decay. Notably, the ionic conductivity of SPP@PVDF at -40 °C is 8-fold higher than SPAF@PVDF, as PEtOx reduces Zn2+ migration barriers. This work offers a molecular-level strategy for designing cryogenically robust SPEs, advancing ZSSB technologies for extreme environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI