材料科学
钨
镍
硫化物
分解水
氢
厚板
硫化氢
氧气
Atom(片上系统)
氢原子
析氧
无机化学
化学工程
冶金
物理化学
催化作用
电化学
硫黄
化学
有机化学
地球物理学
嵌入式系统
工程类
地质学
光催化
烷基
计算机科学
电极
作者
Wen‐Gang Cui,Xiangrong Ren,Shoudong Wang,Yingxian Zhang,Zhenglong Li,Ke Wang,Fan Gao,Zichao Shen,Yanxia Liu,Xingqiang Wang,Zhijun Wu,Yaxiong Yang,Dingsheng Wang,Mingxia Gao
标识
DOI:10.1002/aenm.202503257
摘要
Abstract The sluggish kinetics of the Volmer step (water dissociation) in alkaline hydrogen evolution reaction (HER) remain a critical bottleneck. Herein, an oxygen‐coordinated tungsten single‐atom anchored on nickel sulfide (W 1 O/NiS) slabs is proposed to dynamically modulate the interfacial water network. Combining experimental and theoretical approaches, it is revealed that the atomic‐level W 1 O motifs induce a localized electric field, which affords an enriched supply of free water at the inner Helmholtz plane (IHP), as well as reorients interfacial water molecules to a “H‐down” configuration. This structural transition lowers the energy barrier of the Volmer step (H 2 O + e − → H * + OH − ) from 2.41 to 1.02 eV, thereby enhancing the alkaline HER activity. As a result, the developed W 1 O/NiS catalyst achieves an ultralow overpotential of 76 and 236 mV at 10 and 1000 mA cm −2 in 1 m KOH, respectively, maintaining 98% stability after 300 h at a current density of 200 mA cm −2 , surpassing most of the reported Ni‐based HER catalysts. This work provides atomic‐level insights into the electrocatalytic microenvironment engineering for water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI