计算机科学
限制
人工智能
卷积(计算机科学)
特征(语言学)
机器人
代表(政治)
比例(比率)
计算机视觉
模式识别(心理学)
人工神经网络
地图学
政治
工程类
哲学
机械工程
法学
地理
语言学
政治学
作者
Li Zhang,Guanqun Guo,Wenjie Wang
摘要
ABSTRACT Background Accurate detection of surgical instruments is essential for robot‐assisted surgery. Existing methods face challenges in both accuracy and real‐time performance, limiting their clinical applicability. Methods We propose UK‐YOLOv10, a novel framework that integrates two innovations: the uni‐fusion attention module (UFAM) for enhanced multi‐scale feature representation, and the C2fKAN module, which employs KAN convolution to improve classification accuracy and accelerate training. Results On the M2CAI16‐Tool‐Locations dataset, UK‐YOLOv10 achieves detection accuracy of 96.7%, an mAP@0.5 of 96.4%, and an mAP@0.5:0.95 of 0.605, outperforming YOLOv10 by 3%, 2.2% and 3.6%, respectively. Generalisation on COCO2017 resulted in an mAP@0.5:0.95 of 0.386. Conclusion UK‐YOLOv10 significantly improves surgical instrument detection and demonstrates strong potential for robot‐assisted surgeries.
科研通智能强力驱动
Strongly Powered by AbleSci AI