Nonstationary frequency analysis of extreme precipitation: Embracing trends in observations

降水 广义极值分布 极值理论 环境科学 马尔科夫蒙特卡洛 气候学 贝叶斯概率 计量经济学 统计 样品(材料) 蒙特卡罗方法 气象学 计算机科学 数学 地理 物理 地质学 热力学
作者
Gabriel Anzolin,Debora Yumi de Oliveira,Jasper A. Vrugt,Amir AghaKouchak,Pedro Luiz Borges Chaffe
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:637: 131300-131300 被引量:2
标识
DOI:10.1016/j.jhydrol.2024.131300
摘要

Knowledge of the recurrence intervals of precipitation extremes is vital for infrastructure design, risk assessment, and insurance planning. However, trends and shifts in rainfall patterns globally pose challenges to the application of extreme value analysis (EVA) which relies critically on the assumption of stationarity. In this paper, we explore: (1) the suitability of nonstationary (NS) models in the presence of statistically significant trends, and (2) their potential in modeling out-of-sample data to improve frequency analysis of extreme precipitation. We analyze the benefits of using a nonstationary Generalized Extreme Value (GEV) model for annual extreme precipitation records from Southern Brazil. The location of the GEV distribution is allowed to change with time. The unknown GEV model parameters are estimated using Bayesian techniques coupled with Markov chain Monte Carlo simulation. Next, we use GAME sampling to compute the evidence (and their ratios, the so-called Bayes factors) for stationary and nonstationary models of annual maximum precipitation. Our results show that the presence of a statistically significant trend in annual maximum precipitation alone does not justify the use of a NS model. The location parameter of the GEV distribution must also be well defined, otherwise, stationary models of annual maximum precipitation receive more support by the data. These findings reiterate the importance of accounting for GEV model parameters and predictive uncertainty in frequency analysis and hypothesis testing of annual maximum precipitation data records. Furthermore, a meaningful EVA demands detailed knowledge about the origin and persistence of observed changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小二郎应助aniu采纳,获得10
刚刚
别吃小米粥完成签到,获得积分10
1秒前
3秒前
Eva发布了新的文献求助20
3秒前
4秒前
5秒前
无限大山发布了新的文献求助10
5秒前
6秒前
7秒前
领导范儿应助雨之夏日采纳,获得200
7秒前
7秒前
汉堡包应助花凉采纳,获得10
7秒前
亿亿亿亿完成签到,获得积分10
8秒前
乐观小之应助wang采纳,获得10
9秒前
9秒前
松山少林学武功完成签到 ,获得积分10
9秒前
10秒前
研友_VZG7GZ应助Eva采纳,获得10
10秒前
11秒前
12秒前
发多多完成签到,获得积分10
13秒前
吱吱发布了新的文献求助10
13秒前
清梦发布了新的文献求助10
15秒前
帅小主完成签到,获得积分20
17秒前
angelinazh发布了新的文献求助10
19秒前
Ava应助安生采纳,获得10
21秒前
25秒前
daffodil发布了新的文献求助30
27秒前
兔兔跑路发布了新的文献求助20
27秒前
在水一方应助发多多采纳,获得10
28秒前
29秒前
wanci应助科研通管家采纳,获得100
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
31秒前
英姑应助科研通管家采纳,获得10
31秒前
大模型应助科研通管家采纳,获得10
31秒前
31秒前
华仔应助科研通管家采纳,获得10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836326
求助须知:如何正确求助?哪些是违规求助? 3378639
关于积分的说明 10505544
捐赠科研通 3098283
什么是DOI,文献DOI怎么找? 1706415
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772417