Few-shot target detection in SAR imagery via intensive meta-feature aggregation

合成孔径雷达 计算机科学 弹丸 遥感 特征(语言学) 雷达成像 逆合成孔径雷达 人工智能 特征提取 变更检测 计算机视觉 模式识别(心理学) 地质学 雷达 电信 语言学 化学 哲学 有机化学
作者
Zheng Zhou,Zongjie Cao,Qin Chen,Kailing Tang,Yujian Li,Yiming Pi,Zongyong Cui
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:1
标识
DOI:10.1109/tgrs.2024.3405637
摘要

Synthetic Aperture Radar (SAR) targets often exhibit characteristics such as high mobility and strong concealment, resulting in scarce SAR data and the manifestation of few-shot data properties. These few-shot SAR targets are susceptible to interference from complex background information and mutual interference of target features, making it challenging to distinguish SAR targets from the background. Additionally, there is confusion in features among different targets, leading to models being highly insensitive to few-shot SAR targets under complex distribution conditions in new tasks. Similarly, these few-shot SAR targets exhibit significant sample scarcity and sample variations, resulting in pronounced fluctuations in class centers and difficulty in determining sample distributions. This leads to challenges in accurately representing the potential representative features of few-shot SAR targets by the model. To address these issues, further enhancement of SAR target features is necessary to provide a robust foundation for the ultimate aggregation module. Therefore, based on the meta-learning paradigm, we propose a method for few-shot target detection in SAR imagery via intensive meta-feature aggregation (IMFA), aiming to reinforce SAR target features for improved representation. Specifically, firstly, we propose a novel hierarchical multi-head cross attention (HMCA) to capture global multiscale contextual information in different subspaces and analyze representative features between different targets to distinguish SAR targets from the background. Then, based on HMCA, we introduce a novel feature coupling module (FCM) to couple support features with cognitive information from the query image on the support branch. This is done to reduce the confusion and mutual interference of features between targets while enhancing the model's generalization ability on new tasks. Finally, on the support branch with query-aware information, we construct a Gaussian distribution to estimate the class distribution of few-shot SAR targets and replace traditional class prototypes. On this basis, we propose the feature information maximization module (FIMM) to avoid feature information shift, greatly strengthening the expression of potential features. Through these steps, reinforced meta-features can be obtained, enabling efficient aggregation. Experiments on the SRSDD-v1.0 and MSAR-1.0 datasets demonstrate that our method has consistently outperformed state-of-the-art approaches in all configurations, achieving state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗大大完成签到 ,获得积分10
刚刚
tls完成签到,获得积分10
刚刚
英姑应助害羞的思松采纳,获得10
2秒前
宇帅完成签到,获得积分10
2秒前
wanci应助可耐的碧采纳,获得10
2秒前
无奈的小兔子完成签到,获得积分10
4秒前
4秒前
aa完成签到,获得积分20
5秒前
6秒前
6秒前
Mic应助YY采纳,获得30
7秒前
科研通AI6应助漂亮素采纳,获得10
8秒前
9秒前
yy发布了新的文献求助10
9秒前
打打应助Pepsi采纳,获得10
10秒前
小马甲应助zz采纳,获得10
10秒前
10秒前
11秒前
研友_8K2x2Z完成签到,获得积分10
11秒前
谦让山槐完成签到 ,获得积分10
11秒前
11秒前
11秒前
whisper发布了新的文献求助10
11秒前
jamin发布了新的文献求助10
13秒前
junlin应助非倪若愚采纳,获得10
14秒前
科研人完成签到 ,获得积分10
14秒前
14秒前
m李发布了新的文献求助10
15秒前
15秒前
ljh024发布了新的文献求助10
16秒前
小妮完成签到,获得积分10
17秒前
碎片完成签到,获得积分10
18秒前
18秒前
18秒前
可耐的碧发布了新的文献求助10
18秒前
惠葶发布了新的文献求助10
18秒前
19秒前
ljy完成签到,获得积分10
19秒前
愉快的楷瑞完成签到,获得积分10
19秒前
勤奋的缘郡完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541464
求助须知:如何正确求助?哪些是违规求助? 4627921
关于积分的说明 14605667
捐赠科研通 4568962
什么是DOI,文献DOI怎么找? 2504866
邀请新用户注册赠送积分活动 1482342
关于科研通互助平台的介绍 1453883