亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of habitat radiomics and traditional radiomic features for predicting pathological complete response in esophageal squamous cell carcinoma following neoadjuvant immunotherapy and chemotherapy: a multicenter comparative study

无线电技术 医学 肿瘤科 列线图 特征选择 免疫疗法 Lasso(编程语言) 个性化医疗 内科学 机器学习 精密医学 病态的 食管鳞状细胞癌 回顾性队列研究 人工智能 新辅助治疗 队列 临床试验 放射基因组学 放射科 靶向治疗 医学影像学 生物标志物 接收机工作特性 特征(语言学) 比例危险模型 预测建模 特征提取 队列研究 多中心研究 医学诊断
作者
Zhiyun Xu,Yijiang Lu,Fengyi Zuo,HanLin Ding,Yipeng Feng,Xiaokang Shen,Xuming Song,Wenjie Xia,Qixing Mao,B. Chen,Rutao Li,Hui Wang,Lin Xu,Gaochao Dong,Feng Jiang
出处
期刊:Journal of Translational Medicine [Springer Nature]
标识
DOI:10.1186/s12967-025-07522-y
摘要

Abstract Background Esophageal squamous cell carcinoma (ESCC) remains one of the leading causes of cancer-related mortality worldwide. Although immunotherapy has shown promising efficacy for locally advanced ESCC, the lack of reliable predictive tools and the marked heterogeneity of tumors make it difficult to accurately evaluate treatment responses. To address this challenge, we conducted a multicenter study aimed at developing and comparing predictive models based on habitat radiomics and traditional radiomic features to estimate pathological complete response (pCR) in patients receiving neoadjuvant immunotherapy and chemotherapy. Using multicenter data, we systematically assessed the performance of these models to determine the relative advantages of each feature type in predicting treatment outcomes and supporting personalized therapeutic strategies. Methods This retrospective study analyzed ESCC patient data from three medical centers. Pre-treatment CT imaging was utilized for tumor region segmentation and the extraction of both Habitat Radiomics and traditional Radiomic Features. Feature selection was performed using LASSO regression, and machine learning models were developed based on these features. Several machine learning algorithms, including Support Vector Machines (SVM), Random Forest, and XGBoost, were employed for training and validation. Model performance was evaluated using metrics such as ROC curves, AUC, sensitivity, and specificity. Results The Habitat Radiomics model achieved AUCs of 0.938 in the training cohort, 0.896 in the internal validation cohort, 0.819 in external validation cohort 1, and 0.846 in external validation cohort 2, demonstrating strong and consistent predictive performance. In comparison, the traditional Radiomics model yielded AUCs of 0.941, 0.845, 0.796, and 0.729, respectively. Beyond higher AUC values, the Habitat Radiomics model also showed superior sensitivity and specificity in predicting pCR. Notably, the combined model that integrated both Habitat and traditional Radiomics features outperformed the individual models, achieving the highest AUC of 0.960 across cohorts and underscoring its superior predictive accuracy. Conclusion This study demonstrates that Habitat Radiomics features provide significant advantages over traditional Radiomics in predicting immunotherapy response in ESCC patients. The combined model, integrating both feature sets, shows exceptional predictive performance, with promising clinical applications in personalized treatment strategies. Future research will explore the broader applicability of this model across different cancer types and its integration with additional biomarkers to further enhance prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
7秒前
lyw发布了新的文献求助10
13秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
mark完成签到,获得积分10
52秒前
54秒前
57秒前
2分钟前
cheers发布了新的文献求助10
2分钟前
3分钟前
天天快乐应助老不靠谱采纳,获得30
3分钟前
sting发布了新的文献求助10
3分钟前
迟迟不吃吃完成签到 ,获得积分10
3分钟前
LingC完成签到,获得积分10
3分钟前
3分钟前
鱼鱼发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
鱼鱼完成签到,获得积分10
4分钟前
深情安青应助ceeray23采纳,获得20
4分钟前
ding应助Jeff采纳,获得10
5分钟前
亲亲布加拉提应助ceeray23采纳,获得20
5分钟前
ZHANG完成签到,获得积分10
5分钟前
圈哥完成签到 ,获得积分10
5分钟前
5分钟前
專注完美近乎苛求完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
爆米花应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
乐乐应助科研通管家采纳,获得10
6分钟前
celinewu完成签到,获得积分10
6分钟前
ceeray23发布了新的文献求助20
7分钟前
forest发布了新的文献求助10
7分钟前
ding应助风华笔墨采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706432
求助须知:如何正确求助?哪些是违规求助? 5173421
关于积分的说明 15246911
捐赠科研通 4859948
什么是DOI,文献DOI怎么找? 2608263
邀请新用户注册赠送积分活动 1559177
关于科研通互助平台的介绍 1516937