Metabolic Profiling Defines Glioblastoma Subtypes with Distinct Prognoses and Therapeutic Vulnerabilities

作者
Fan Wu,Yiyun Yin,Di Wang,Chang-Qing Pan,You Zhai,Mingchen Yu,Z Wang,Wen-Hua Fan,Zheng Zhao,Guan-Zhang Li,Tao Jiang,Wei Zhang
出处
期刊:Neuro-oncology [Oxford University Press]
标识
DOI:10.1093/neuonc/noaf294
摘要

Abstract Background Glioblastoma (GBM) is a highly aggressive brain tumor with profound metabolic heterogeneity. However, a clinically actionable classification based on metabolic gene expression remains undefined. Methods We conducted a comprehensive multi-omics analysis of IDH-wildtype GBMs from three publicly available datasets. Prognostic metabolism-related genes were used to define transcriptional subtypes, which were validated in independent datasets and patient-derived cell (PDC) models. Functional assays and drug sensitivity studies were performed to explore therapeutic relevance. Results We identified three distinct metabolic subtypes: M1, enriched for synaptic signaling and amino acid metabolism, exhibited leading-edge anatomical features; M2, characterized by mitochondrial metabolism and cell cycle activity, was associated with favorable survival; and M3, marked by hypoxia, immune activation and suppression, and broad metabolic pathway engagement, correlated with poor prognosis. These subtypes were reproducible across cohorts and faithfully recapitulated in PDC models. Metabolomic profiling confirmed distinct subtype-specific metabolic signatures. Notably, M3 cells showed high sensitivity to inhibitors targeting glycosaminoglycan degradation, nicotinamide metabolism, and retinoic acid pathways in both in vitro and in vivo models. Conclusion Our study defines three biologically and clinically relevant metabolic subtypes of IDH-wildtype GBM. This classification reveals distinct metabolic programs and therapeutic vulnerabilities, providing a framework for precision metabolism-targeted strategies in glioblastoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西因应助寒冷的晓亦采纳,获得10
刚刚
刚刚
ichigo完成签到,获得积分10
刚刚
雅悦发布了新的文献求助10
1秒前
邓佳鑫Alan应助lhlgood采纳,获得10
1秒前
3秒前
3秒前
酷酷紫易完成签到 ,获得积分10
3秒前
嘟嘟嘟发布了新的文献求助10
3秒前
4秒前
瑁mao完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
Cmiudz完成签到,获得积分10
7秒前
Amosummer发布了新的文献求助30
8秒前
8秒前
Su完成签到,获得积分10
8秒前
楠枫应助生物质炭采纳,获得10
8秒前
8秒前
9秒前
9秒前
10秒前
我是老大应助pingyy采纳,获得10
10秒前
10秒前
taro完成签到,获得积分20
10秒前
10秒前
英俊的铭应助文艺明杰采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601337
求助须知:如何正确求助?哪些是违规求助? 4686845
关于积分的说明 14846441
捐赠科研通 4680565
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506182
关于科研通互助平台的介绍 1471283