Validation of early risk-prediction models for gestational diabetes based on clinical characteristics

医学 妊娠期糖尿病 体质指数 接收机工作特性 怀孕 队列 糖尿病 人口 产科 队列研究 病历 内科学 妊娠期 内分泌学 遗传学 环境卫生 生物
作者
Sébastien Thériault,Jean‐Claude Forest,Jacques Massé,Yves Giguère
出处
期刊:Diabetes Research and Clinical Practice [Elsevier BV]
卷期号:103 (3): 419-425 被引量:36
标识
DOI:10.1016/j.diabres.2013.12.009
摘要

Aims Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention. Methods This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy. Results The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GDM cases requiring insulin therapy. Conclusions External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助刘呦呦采纳,获得10
1秒前
科研通AI5应助错季采纳,获得50
1秒前
L123完成签到,获得积分10
2秒前
健那绿完成签到,获得积分10
4秒前
5秒前
7秒前
chelsea发布了新的文献求助10
9秒前
10秒前
YWang发布了新的文献求助10
12秒前
科研通AI2S应助Exk采纳,获得20
14秒前
14秒前
汉堡包应助tomato采纳,获得10
14秒前
hdjienb发布了新的文献求助10
15秒前
一个灵魂的独白完成签到,获得积分10
16秒前
17秒前
慵懒的树完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
hdjienb完成签到,获得积分10
22秒前
22秒前
qq完成签到,获得积分10
22秒前
核桃发布了新的文献求助10
23秒前
24秒前
24秒前
tomato完成签到,获得积分20
24秒前
单薄怜寒完成签到 ,获得积分10
24秒前
烟花应助一个灵魂的独白采纳,获得10
25秒前
科研通AI5应助尊敬的惠采纳,获得10
25秒前
25秒前
liang完成签到 ,获得积分10
29秒前
科研通AI5应助lyj采纳,获得10
30秒前
30秒前
刘呦呦发布了新的文献求助10
30秒前
彭于晏应助功成采纳,获得10
31秒前
魚子应助肖萍花采纳,获得30
32秒前
贪玩老姆完成签到 ,获得积分10
33秒前
Ahhh完成签到 ,获得积分10
34秒前
杰伦完成签到,获得积分10
36秒前
左丘秋尽发布了新的文献求助10
36秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839942
求助须知:如何正确求助?哪些是违规求助? 3382151
关于积分的说明 10521656
捐赠科研通 3101616
什么是DOI,文献DOI怎么找? 1708201
邀请新用户注册赠送积分活动 822278
科研通“疑难数据库(出版商)”最低求助积分说明 773223