Validation of early risk-prediction models for gestational diabetes based on clinical characteristics

医学 妊娠期糖尿病 体质指数 接收机工作特性 怀孕 队列 糖尿病 人口 产科 队列研究 病历 内科学 妊娠期 内分泌学 环境卫生 生物 遗传学
作者
Sébastien Thériault,Jean‐Claude Forest,Jacques Massé,Yves Giguère
出处
期刊:Diabetes Research and Clinical Practice [Elsevier BV]
卷期号:103 (3): 419-425 被引量:36
标识
DOI:10.1016/j.diabres.2013.12.009
摘要

Aims Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention. Methods This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy. Results The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GDM cases requiring insulin therapy. Conclusions External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂棒球发布了新的文献求助10
刚刚
1秒前
笠昂发布了新的文献求助10
1秒前
小垃圾10号完成签到,获得积分10
2秒前
浮游应助mysci采纳,获得10
2秒前
闪闪的觅云完成签到,获得积分10
2秒前
沉默芸发布了新的文献求助10
2秒前
科研通AI5应助Muxi采纳,获得10
3秒前
Jackson_lv发布了新的文献求助10
3秒前
JamesPei应助博慧采纳,获得10
3秒前
3秒前
4秒前
wbp31完成签到,获得积分10
4秒前
充电宝应助sky采纳,获得10
5秒前
LIUJC完成签到,获得积分10
5秒前
6秒前
Lee发布了新的文献求助10
6秒前
烤冷面应助dsfsd采纳,获得20
6秒前
浮游应助lizh187采纳,获得10
6秒前
iNk应助宋祝福采纳,获得20
6秒前
7秒前
老唐发布了新的文献求助10
7秒前
7秒前
7秒前
领导范儿应助lanshuitai采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
小仙完成签到,获得积分10
8秒前
还单身的雅琴完成签到,获得积分10
8秒前
wbp31发布了新的文献求助10
8秒前
pzqmoon完成签到,获得积分10
8秒前
罗实完成签到 ,获得积分10
9秒前
9秒前
orixero应助sunsuan采纳,获得10
9秒前
scofield完成签到,获得积分20
10秒前
11秒前
科目三应助1332881954采纳,获得30
11秒前
在水一方应助ardejiang采纳,获得10
11秒前
飘逸访蕊发布了新的文献求助10
12秒前
FashionBoy应助旋风0127采纳,获得10
12秒前
面面完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954553
求助须知:如何正确求助?哪些是违规求助? 4216890
关于积分的说明 13121171
捐赠科研通 3999023
什么是DOI,文献DOI怎么找? 2188625
邀请新用户注册赠送积分活动 1203758
关于科研通互助平台的介绍 1116092