细胞外基质
纤维化
伤口愈合
单克隆抗体
生物
转化生长因子β
免疫学
转化生长因子
病理
纤维连接蛋白
细胞生物学
癌症研究
医学
抗体
作者
Ann Logan,Jonathan Green,A. Hunter,Ronald H. Jackson,Martin Berry
标识
DOI:10.1046/j.1460-9568.1999.00654.x
摘要
Abstract The transforming growth factor‐βs (TGF‐βs) are potent fibrogenic factors implicated in numerous central nervous system (CNS) pathologies in which fibrosis and neural dysfunction are causally associated. In this study, we aim to limit the fibrogenic process in a model of CNS scarring using a recombinant human monoclonal antibody, derived from phage display libraries and specific to the active form of the TGF‐β2 isoform. The implicit inference of the work was that, as such antibodies are potential pharmacological agents for the treatment of human CNS fibrotic diseases, validation of efficacy in a mammalian animal model is a first step towards this end. Treatment of cerebral wounds with the anti‐TGF‐β2 antibody led to a marked attenuation of all aspects of CNS scarring, including matrix deposition, formation of an accessory glial‐limiting membrane, inflammation and angiogenesis. For example, in the wound, levels of: (i) the connective tissue components fibronectin, laminin and chondroitin sulphate proteoglycan; and (ii) wound‐responsive cells including astrocytes and macrophages/microglia, were markedly reduced. Our findings suggest that such synthetic anti‐fibrotic TGF‐β antibodies are potentially applicable to a number of human CNS fibrotic diseases to arrest the deposition of excessive extracellular matrix components, and maintain and/or restore functional integrity.
科研通智能强力驱动
Strongly Powered by AbleSci AI