小干扰RNA
A549电池
基因沉默
癌症研究
体内
体外
细胞凋亡
靶向治疗
肺癌
细胞生长
细胞
RNA干扰
血管生成
化学
细胞培养
癌症
医学
生物
核糖核酸
转染
病理
内科学
生物化学
基因
生物技术
遗传学
作者
Yang Yang,Yunxia Hu,Yuhua Wang,Jun Li,Feng Liu,Leaf Huang
摘要
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death. To explore the potential of small interfering RNA (siRNA) therapy for NSCLC, we have developed anisamide-targeted LCP to efficiently deliver siRNA into the cytoplasm of sigma receptor-expressing NSCLC cells. Targeted LCP demonstrated a 9-fold higher siRNA delivery efficiency compared to nontargeted LCP in A549 cells in vitro. To simultaneously target multiple oncogenic mechanisms, we coformulated three siRNA sequences targeting HDM2, c-myc and VEGF oncogenes, and investigated their efficacy of cell-killing in A549 and H460 cells in vitro. The results indicated that the pooled siRNA codelivered by the targeted LCP could effectively and simultaneously knock down HDM2, c-myc and VEGF expressions and significantly inhibit tumor cell growth. After iv injection of mice bearing A549 xenografted tumor with Texas Red-labeled siRNA formulated in the targeted LCP, siRNA was successfully delivered to and concentrated in the tumor cells. Repeated intravenous injections of mice with pooled siRNA formulated in the targeted LCP significantly impaired NSCLC growth in vivo (p < 0.01) for both A549 and H460 tumors, demonstrating an ED50 for the treatment of ∼ 0.2 mg/kg in A549 tumors. The enhanced antitumor activity is due to the fact that the silencing of HDM2/c-myc/VEGF could inhibit tumor proliferation and angiogenesis and also simultaneously induce tumor apoptosis. Our results demonstrate that the targeted LCP is a promising vector to deliver pooled siRNA into tumors and to achieve multiple target blocking. This is potentially a valid therapeutic modality in the gene therapy of human NSCLC.
科研通智能强力驱动
Strongly Powered by AbleSci AI