创伤性脑损伤
医学
干细胞疗法
神经科学
诱导多能干细胞
临床试验
重症监护医学
间充质干细胞
干细胞
生物信息学
胚胎干细胞
心理学
精神科
病理
生物
基因
生物化学
遗传学
作者
AmiraSan Dekmak,Sarah Mantash,Abdullah Shaito,Amer Toutonji,Naify Ramadan,Hussein Ghazale,Nouhad Kassem,Hala Darwish,Kazem Zibara
标识
DOI:10.1016/j.bbr.2016.12.039
摘要
TBI is a nondegenerative, noncongenital insult to the brain from an external mechanical force; for instance a violent blow in a car accident. It is a complex injury with a broad spectrum of symptoms and has become a major cause of death and disability in addition to being a burden on public health and societies worldwide. As such, finding a therapy for TBI has become a major health concern for many countries, which has led to the emergence of many monotherapies that have shown promising effects in animal models of TBI, but have not yet proven any significant efficacy in clinical trials. In this paper, we will review existing and novel TBI treatment options. We will first shed light on the complex pathophysiology and molecular mechanisms of this disorder, understanding of which is a necessity for launching any treatment option. We will then review most of the currently available treatments for TBI including the recent approaches in the field of stem cell therapy as an optimal solution to treat TBI. Therapy using endogenous stem cells will be reviewed, followed by therapies utilizing exogenous stem cells from embryonic, induced pluripotent, mesenchymal, and neural origin. Combination therapy is also discussed as an emergent novel approach to treat TBI. Two approaches are highlighted, an approach concerning growth factors and another using ROCK inhibitors. These approaches are highlighted with regard to their benefits in minimizing the outcomes of TBI. Finally, we focus on the consequent improvements in motor and cognitive functions after stem cell therapy. Overall, this review will cover existing treatment options and recent advancements in TBI therapy, with a focus on the potential application of these strategies as a solution to improve the functional outcomes of TBI.
科研通智能强力驱动
Strongly Powered by AbleSci AI