重采样
分位数
估计员
推论
渐近分布
计算机科学
统计
分位数回归
计量经济学
一致性(知识库)
采样(信号处理)
数学
抽样分布
数据挖掘
人工智能
滤波器(信号处理)
计算机视觉
作者
Gongjun Xu,Tony Sit,Lan Wang,Chiung‐Yu Huang
标识
DOI:10.1080/01621459.2016.1222286
摘要
Biased sampling occurs frequently in economics, epidemiology, and medical studies either by design or due to data collecting mechanism. Failing to take into account the sampling bias usually leads to incorrect inference. We propose a unified estimation procedure and a computationally fast resampling method to make statistical inference for quantile regression with survival data under general biased sampling schemes, including but not limited to the length-biased sampling, the case-cohort design, and variants thereof. We establish the uniform consistency and weak convergence of the proposed estimator as a process of the quantile level. We also investigate more efficient estimation using the generalized method of moments and derive the asymptotic normality. We further propose a new resampling method for inference, which differs from alternative procedures in that it does not require to repeatedly solve estimating equations. It is proved that the resampling method consistently estimates the asymptotic covariance matrix. The unified framework proposed in this article provides researchers and practitioners a convenient tool for analyzing data collected from various designs. Simulation studies and applications to real datasets are presented for illustration. Supplementary materials for this article are available online.
科研通智能强力驱动
Strongly Powered by AbleSci AI