Reprogramming AA catabolism in CHO cells with CRISPR/Cas9 genome editing improves cell growth and reduces byproduct secretion

分解代谢 中国仓鼠卵巢细胞 氨基酸 生物化学 生物 代谢工程 分泌物 基因 新陈代谢 清脆的 基因组编辑 细胞生物学 化学 受体
作者
Daniel Ley,Sara Pereira,Lasse Ebdrup Pedersen,Jens Aage Hansen,Hooman Hefzi,Anne Davy,Tae Kwang Ha,Tune Wulff,Helene Faustrup Kildegaard,Mikael Rørdam Andersen
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:56: 120-129 被引量:24
标识
DOI:10.1016/j.ymben.2019.09.005
摘要

Chinese hamster ovary (CHO) cells are the preferred host for producing biopharmaceuticals. Amino acids are biologically important precursors for CHO metabolism; they serve as building blocks for proteogenesis, including synthesis of biomass and recombinant proteins, and are utilized for growth and cellular maintenance. In this work, we studied the physiological impact of disrupting a range of amino acid catabolic pathways in CHO cells. We aimed to reduce secretion of growth inhibiting metabolic by-products derived from amino acid catabolism including lactate and ammonium. To achieve this, we engineered nine genes in seven different amino acid catabolic pathways using the CRISPR-Cas9 genome editing system. For identification of target genes, we used a metabolic network reconstruction of amino acid catabolism to follow transcriptional changes in response to antibody production, which revealed candidate genes for disruption. We found that disruption of single amino acid catabolic genes reduced specific lactate and ammonium secretion while specific growth rate and integral of viable cell density were increased in many cases. Of particular interest were Hpd and Gad2 disruptions, which show unchanged AA uptake rates, while having growth rates increased up to 19%, and integral of viable cell density as much as 50% higher, and up to 26% decrease in specific ammonium production and to a lesser extent (up to 22%) decrease in lactate production. This study demonstrates the broad potential of engineering amino acid catabolism in CHO cells to achieve improved phenotypes for bioprocessing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助土豆粉和林采纳,获得10
1秒前
zengzeng完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
CodeCraft应助身处人海采纳,获得10
7秒前
顾矜应助一个小水滴采纳,获得10
8秒前
背后幻竹完成签到,获得积分10
8秒前
9秒前
机智的水杯给机智的水杯的求助进行了留言
9秒前
9秒前
登峰造极完成签到,获得积分10
10秒前
CodeCraft应助zbz12138采纳,获得10
11秒前
噫故发布了新的文献求助10
12秒前
12秒前
华仔应助爱杨紫的土豆子采纳,获得10
14秒前
14秒前
chen完成签到,获得积分10
15秒前
巫所谓完成签到,获得积分10
15秒前
清梦发布了新的文献求助10
15秒前
玄月廿九发布了新的文献求助10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
xyzlancet发布了新的文献求助10
17秒前
runner完成签到,获得积分10
17秒前
yaoqiangshi完成签到,获得积分10
18秒前
天才小能喵应助研友_想想采纳,获得10
18秒前
思源应助铜眼科采纳,获得10
18秒前
巫所谓发布了新的文献求助10
19秒前
19秒前
神内小钟完成签到,获得积分10
21秒前
cyw9608完成签到,获得积分20
22秒前
22秒前
23秒前
酷波er应助ruilong采纳,获得10
23秒前
24秒前
欧冶子oO发布了新的文献求助20
24秒前
acuter发布了新的文献求助10
25秒前
25秒前
cyw9608发布了新的文献求助10
25秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Yaws' Handbook of Antoine coefficients for vapor pressure 500
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
行動データの計算論モデリング 強化学習モデルを例として 500
Division and square root. Digit-recurrence algorithms and implementations 400
Johann Gottlieb Fichte: Die späten wissenschaftlichen Vorlesungen / IV,1: ›Transzendentale Logik I (1812)‹ 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2554088
求助须知:如何正确求助?哪些是违规求助? 2178969
关于积分的说明 5616730
捐赠科研通 1900095
什么是DOI,文献DOI怎么找? 948813
版权声明 565554
科研通“疑难数据库(出版商)”最低求助积分说明 504484