凯莱图
组合数学
数学
二面体群
自同构
图形
顶点传递图
特征向量
不可约表示
光谱(功能分析)
学位(音乐)
离散数学
群(周期表)
电压图
纯数学
化学
折线图
物理
有机化学
量子力学
声学
标识
DOI:10.1016/0095-8956(79)90079-0
摘要
By a result of L. Lovász, the determination of the spectrum of any graph with transitive automorphism group easily reduces to that of some Cayley graph. We derive an expression for the spectrum of the Cayley graph X(G,H) in terms of irreducible characters of the group G: λti,1+…+λti,ni=∑g1,…,gt∈HXiΠs=1tgs for any natural number t, where ξi is an irreducible character (over C), of degree ni , and λi,1 ,…, λi,ni are eigenvalues of X(G, H), each one ni times. (σ ni2 = n = | G | is the total'number of eigenvalues.) Using this formula for t = 1,…, ni one can obtain a polynomial of degree ni whose roots are λi,1,…,λi,ni. The results are formulated for directed graphs with colored edges. We apply the results to dihedral groups and prove the existence of k nonisomorphic Cayley graphs of Dp with the same spectrum provided p > 64k, prime.
科研通智能强力驱动
Strongly Powered by AbleSci AI