Novel Predictors of Intravenous Immunoglobulin Resistance in Chinese Children with Kawasaki Disease

医学 川崎病 接收机工作特性 逻辑回归 计分系统 内科学 曲线下面积 动脉
作者
Peipei Fu,Zhong-Dong Du,Yuesong Pan
出处
期刊:Pediatric Infectious Disease Journal [Ovid Technologies (Wolters Kluwer)]
卷期号:32 (8): e319-e323 被引量:64
标识
DOI:10.1097/inf.0b013e31828e887f
摘要

The purpose of this study was to develop a predictive scoring system to identify intravenous immunoglobulin resistance in children with Kawasaki disease, to implement additional therapies early in the course of their illness and prevent coronary artery lesions.We performed a retrospective review of children with Kawasaki disease treated within 10 days of fever onset. To identify independent predictors of intravenous immunoglobulin resistance, multivariable logistic regression models were constructed using variables selected by univariable analysis. The independent predictors were combined into a new scoring system and compared with 2 existing systems. The discriminatory capacity of the scoring system was assessed using the area under the receiver operating characteristic curves.By logistic regression analysis, polymorphous exanthema, changes around the anus, days of illness at initial treatment, percentage of neutrophils, C-reactive protein levels, albumin levels, and total bilirubin proved to be independent predictors of intravenous immunoglobulin resistance. The new scoring system gave an area under the receiver operating characteristic curve of 0.672. In this scoring system, 2 risk strata were identified: low risk, with scores of 0-3, and high risk, with scores of ≥4. The sensitivity was 54.1% and the specificity was 71.2%.The new scoring system had a higher specificity and sensitivity for Chinese children, compared with the Kobayashi scoring system and the Egami scoring system, but, unfortunately, the new scoring system was not good enough to be widely used because of its low sensitivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tyy完成签到,获得积分10
刚刚
cc完成签到,获得积分10
1秒前
倪好完成签到,获得积分10
1秒前
1秒前
1秒前
ldh应助奇思妙想采纳,获得10
1秒前
bkagyin应助Jane采纳,获得10
1秒前
fyj发布了新的文献求助10
1秒前
ldh应助hhy采纳,获得10
2秒前
liu完成签到,获得积分10
2秒前
2秒前
寒冷班给寒冷班的求助进行了留言
2秒前
研友_VZG7GZ应助单纯的香寒采纳,获得10
2秒前
大苏打发布了新的文献求助10
3秒前
kxxx发布了新的文献求助10
3秒前
holder完成签到,获得积分10
3秒前
852应助可靠的映秋采纳,获得10
4秒前
简单发布了新的文献求助10
4秒前
丘比特应助X_XI采纳,获得10
4秒前
tingtingzhang发布了新的文献求助10
4秒前
酷波er应助onlyan采纳,获得10
5秒前
5秒前
JamesPei应助侯荣杰采纳,获得10
5秒前
椰啵发布了新的文献求助10
5秒前
英吉利25发布了新的文献求助10
6秒前
6秒前
小虫发布了新的文献求助10
6秒前
xiaolei001应助犹豫傻姑采纳,获得20
6秒前
chendd123发布了新的文献求助10
6秒前
hanwang发布了新的文献求助10
6秒前
旺仔发布了新的文献求助10
6秒前
hh完成签到,获得积分10
6秒前
飘逸怜菡完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
青木蓝发布了新的文献求助10
8秒前
10秒前
andou完成签到,获得积分10
10秒前
成就寄瑶发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506110
求助须知:如何正确求助?哪些是违规求助? 4601589
关于积分的说明 14477878
捐赠科研通 4535577
什么是DOI,文献DOI怎么找? 2485508
邀请新用户注册赠送积分活动 1468423
关于科研通互助平台的介绍 1440915