Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases

声化学 气泡 空化 激进的 超声波传感器 化学 液体气泡 化学反应 微型反应器 化学物理 化学工程 热力学 机械 有机化学 催化作用 声学 物理 工程类
作者
Slimane Merouani,Oualid Hamdaoui,Yacine Rezgui,Miloud Guemini
出处
期刊:Ultrasonics Sonochemistry [Elsevier]
卷期号:22: 41-50 被引量:144
标识
DOI:10.1016/j.ultsonch.2014.07.011
摘要

Central events of ultrasonic action are the bubbles of cavitation that can be considered as powered microreactors within which high-energy chemistry occurs. This work presents the results of a comprehensive numerical assessment of frequency and saturating gases effects on single bubble sonochemistry. Computer simulations of chemical reactions occurring inside a bubble oscillating in liquid water irradiated by an ultrasonic wave have been performed for a wide range of ultrasonic frequencies (213–1100 kHz) under different saturating gases (O2, air, N2 and H2). For O2 and H2 bubbles, reactions mechanism consisting in 25 reversible chemical reactions were proposed for studying the internal bubble-chemistry whereas 73 reversible reactions were taken into account for air and N2 bubbles. The numerical simulations have indicated that radicals such as OH, H, HO2 and O are created in the bubble during the strong collapse. In all cases, hydroxyl radical (OH) is the main oxidant created in the bubble. The production rate of the oxidants decreases as the driving ultrasonic frequency increases. The production rate of OH radical followed the order O2 > air > N2 > H2 and the order becomes more remarkable at higher ultrasonic frequencies. The effect of ultrasonic frequency on single bubble sonochemistry was attributed to its significant impact on the cavitation process whereas the effects of gases were attributed to the nature of the chemistry produced in the bubble at the strong collapse. It was concluded that, in addition to the gas solubility, the nature of the internal bubble chemistry is another parameter of a paramount importance that controls the overall sonochemical activity in aqueous solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
1秒前
阳光大有完成签到,获得积分10
2秒前
隐形曼青应助Bruce采纳,获得10
4秒前
Super莹4589发布了新的文献求助30
4秒前
香菜大姐发布了新的文献求助10
4秒前
4秒前
小糊涂发布了新的文献求助10
4秒前
玩命的易绿完成签到,获得积分10
6秒前
小文发布了新的文献求助10
7秒前
kkuang完成签到 ,获得积分20
7秒前
Huan发布了新的文献求助10
7秒前
甄樱发布了新的文献求助10
7秒前
星辰坠于海应助阿玺采纳,获得10
7秒前
彩色山柏完成签到,获得积分20
8秒前
阳6完成签到 ,获得积分10
8秒前
8秒前
8秒前
sakura发布了新的文献求助10
8秒前
9秒前
10秒前
彭于晏应助玩命的易绿采纳,获得10
11秒前
阳光的凌雪完成签到 ,获得积分10
11秒前
Mrivy发布了新的文献求助10
13秒前
大模型应助小小威廉采纳,获得10
13秒前
小鱼儿发布了新的文献求助10
13秒前
瑕灬发布了新的文献求助10
13秒前
郑伟李完成签到,获得积分10
14秒前
15秒前
务实的落雁完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
光亮雪晴发布了新的文献求助10
18秒前
JAMA兜里揣完成签到,获得积分10
20秒前
Mrivy完成签到,获得积分10
20秒前
LY发布了新的文献求助10
20秒前
汉堡包应助自信书文采纳,获得10
20秒前
万能图书馆应助科研开门采纳,获得10
21秒前
huiqin发布了新的文献求助10
21秒前
小唐发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494750
求助须知:如何正确求助?哪些是违规求助? 4592509
关于积分的说明 14437364
捐赠科研通 4525317
什么是DOI,文献DOI怎么找? 2479362
邀请新用户注册赠送积分活动 1464148
关于科研通互助平台的介绍 1437177