氨解
聚酯纤维
表面改性
材料科学
再生医学
粘附
组织工程
脚手架
聚合物
纳米技术
共轭体系
组合化学
化学
化学工程
生物医学工程
有机化学
细胞
复合材料
催化作用
工程类
生物化学
作者
Yang Zhu,Zhengwei Mao,Changyou Gao
出处
期刊:RSC Advances
[The Royal Society of Chemistry]
日期:2012-11-08
卷期号:3 (8): 2509-2519
被引量:144
摘要
The ester-containing polymers, in particular polyesters, are widely used as biomedical materials due to their industrial availability and, in many cases, degradability. However, the commercially available polyesters are usually absent of bioactive sites or motifs to meet the requirements of some specific biomedical uses, especially in the field of tissue engineering and regenerative medicine. Aminolysis is a convenient and versatile method to introduce –NH2 or other functional groups onto the polyester surface. Functional moieties can then be conjugated to or grafted from these active sites. Numerous studies have managed to fabricate a series of functional surfaces on various types and forms of polyesters. They are capable of improving cell adhesion, proliferation and cellular functions, domination of stem cell differentiation and isolation of certain subgroup of cells, demonstrating the versatility of the aminolysis-based polyester surface modification in biomedical applications. The mechanism and kinetics of aminolysis reaction, as well as its subsequent influence on materials properties are discussed in this review. The successive functionalization strategies and derivative applications of the aminolyzed surfaces are introduced. Finally, the review concludes with current challenges and future perspectives.
科研通智能强力驱动
Strongly Powered by AbleSci AI