Shared parameter models for the joint analysis of longitudinal data and event times

事件数据 计算机科学 事件(粒子物理) 接头(建筑物) 纵向数据 统计 计量经济学 数据挖掘 数学 物理 量子力学 分析 工程类 建筑工程
作者
Edward F. Vonesh,Tom Greene,Mark Schluchter
出处
期刊:Statistics in Medicine [Wiley]
卷期号:25 (1): 143-163 被引量:176
标识
DOI:10.1002/sim.2249
摘要

Abstract Longitudinal studies often gather joint information on time to some event (survival analysis, time to dropout) and serial outcome measures (repeated measures, growth curves). Depending on the purpose of the study, one may wish to estimate and compare serial trends over time while accounting for possibly non‐ignorable dropout or one may wish to investigate any associations that may exist between the event time of interest and various longitudinal trends. In this paper, we consider a class of random‐effects models known as shared parameter models that are particularly useful for jointly analysing such data; namely repeated measurements and event time data. Specific attention will be given to the longitudinal setting where the primary goal is to estimate and compare serial trends over time while adjusting for possible informative censoring due to patient dropout. Parametric and semi‐parametric survival models for event times together with generalized linear or non‐linear mixed‐effects models for repeated measurements are proposed for jointly modelling serial outcome measures and event times. Methods of estimation are based on a generalized non‐linear mixed‐effects model that may be easily implemented using existing software. This approach allows for flexible modelling of both the distribution of event times and of the relationship of the longitudinal response variable to the event time of interest. The model and methods are illustrated using data from a multi‐centre study of the effects of diet and blood pressure control on progression of renal disease, the modification of diet in renal disease study. Copyright © 2005 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花痴的冰蓝完成签到,获得积分10
刚刚
zhangzongli完成签到,获得积分20
1秒前
1秒前
孙朱珠发布了新的文献求助10
3秒前
田様应助完犊子采纳,获得10
3秒前
珂颜堂AI发布了新的文献求助10
3秒前
悠悠小土豆完成签到,获得积分10
3秒前
4秒前
元谷雪发布了新的文献求助10
4秒前
Zoe发布了新的文献求助20
4秒前
5秒前
lmj完成签到,获得积分10
5秒前
Jared应助amll采纳,获得10
5秒前
科研通AI6应助乐乐采纳,获得10
5秒前
xj完成签到,获得积分10
6秒前
今后应助big张采纳,获得10
6秒前
7秒前
7秒前
8秒前
Orange应助auraro采纳,获得10
8秒前
TOM龙发布了新的文献求助10
9秒前
烂漫芷雪完成签到,获得积分10
10秒前
10秒前
阿强完成签到,获得积分10
11秒前
Wang发布了新的文献求助10
12秒前
深情安青应助研友_84WJXZ采纳,获得10
13秒前
木雨亦潇潇完成签到,获得积分10
14秒前
领导范儿应助arizaki7采纳,获得10
14秒前
slx发布了新的文献求助10
15秒前
15秒前
16秒前
李健应助拖把精采纳,获得10
16秒前
干净的凡桃完成签到,获得积分10
17秒前
17秒前
无极微光应助Tooth7采纳,获得20
17秒前
莫问归期应助sally采纳,获得10
17秒前
集力申完成签到,获得积分10
18秒前
Lucas应助ccz采纳,获得10
18秒前
深情安青应助小小米采纳,获得10
18秒前
开心重要完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556625
求助须知:如何正确求助?哪些是违规求助? 4641429
关于积分的说明 14665012
捐赠科研通 4583214
什么是DOI,文献DOI怎么找? 2514041
邀请新用户注册赠送积分活动 1488544
关于科研通互助平台的介绍 1459189