电催化剂
制氢
电解
材料科学
电解水
分解水
联氨(抗抑郁剂)
聚合物电解质膜电解
氢
催化作用
化学工程
高压电解
双功能
氢燃料
氢经济
无机化学
能量载体
析氧
工业废水处理
碱性水电解
离解(化学)
电池电压
废水
阳极
高温电解
电极
电流密度
电解质
燃料电池
蒸汽重整
可逆氢电极
电化学
纳米技术
膜电极组件
电流(流体)
直接乙醇燃料电池
质子交换膜燃料电池
双功能催化剂
微生物电解槽
作者
Meng Yuying,Chunyan Xiang,Wenbiao Zhang,Dahai Zeng,Bing Du,Bao Zhong,Yue Jiang,Damien Voiry,Mingyao Zhao
标识
DOI:10.1002/adfm.202524807
摘要
ABSTRACT Hydrazine‐assisted water electrolysis is promising to achieve energy‐saving hydrogen production in combination with removal of hydrazine contamination, but efficient electrocatalysts to accelerate hydrogen evolution and hydrazine oxidation reactions (HER and HzOR) collaboratively remain challenging. Here, we report the synthesis of Fe and P co‐doped Co 9 S 8 (Fe, P‐Co 9 S 8 ) nanocorals as bifunctional electrocatalysts toward HER and HzOR, with the industrial current density of ±500 mA cm −2 at only −280 and 225 mV versus RHE in 1.0 m KOH, respectively. The combined experimental and theoretical analysis unveil the electronic regulation via Fe and P co‐doping, not only lowers the water dissociation barrier and optimizes the H * adsorption/desorption for HER, but also favors the deprotonation kinetics for HzOR. When integrated into an anion‐exchange membrane electrolyzer, Fe, P‐Co 9 S 8 achieves outstanding hydrazine‐assisted electrolysis with a cell voltage of only ∼404 mV at 500 mA cm −2 – far lower than that of conventional water splitting. This energy‐saving hydrogen production can be directly powered by a poly‐Si solar cell or direct hydrazine fuel cell (DHzFC). Simultaneously, hydrazine‐containing wastewater (0.5 M ) is rapidly decomposed to ∼7 ppb, below the allowable threshold for industrial recycled water. These results underscore the strong practical potential of Fe, P‐Co 9 S 8 catalysts in addressing both energy and environmental challenges.
科研通智能强力驱动
Strongly Powered by AbleSci AI