On the origins of randomization-based feedforward neural networks

计算机科学 人工神经网络 前馈神经网络 乙状窦函数 人工智能 随机化 前馈 算法 随机对照试验 医学 外科 控制工程 工程类
作者
Ponnuthurai Nagaratnam Suganthan,Rakesh Katuwal
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:105: 107239-107239 被引量:128
标识
DOI:10.1016/j.asoc.2021.107239
摘要

This letter identifies original independent works in the domain of randomization-based feedforward neural networks. In the most common approach, only the output layer weights require training while the hidden layer weights and biases are randomly assigned and kept fixed. The output layer weights are obtained using either iterative techniques or non-iterative closed-form solutions. The first such work (abbreviated as RWNN) was published in 1992 by Schmidt et al. for a single hidden layer neural network with sigmoidal activation. In 1994, a closed form solution was offered for the random vector functional link (RVFL) neural networks with direct links from the input to the output. On the other hand, for radial basis function neural networks, randomized selection of basis functions’ centers was used in 1988. Several works were published thereafter, employing similar techniques but with different names while failing to cite the original or relevant sources. In this letter, we make an attempt to identify and trace the origins of such randomization-based feedforward neural networks and give credits to the original works where due and hope that the future research publications in this field will provide fair literature review and appropriate experimental comparisons. We also briefly review the limited performance comparisons in the literature, two recently proposed new names, randomization-based multi-layer or deep neural networks and provide promising future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极觅海发布了新的文献求助10
刚刚
Otto Curious发布了新的文献求助10
1秒前
寒冷书兰完成签到,获得积分10
1秒前
功不唐捐完成签到 ,获得积分10
1秒前
2秒前
2秒前
4秒前
科研通AI6应助汤汤采纳,获得10
4秒前
陈夏萍完成签到 ,获得积分10
4秒前
苹果洋葱完成签到,获得积分10
6秒前
清茶韵心完成签到,获得积分10
6秒前
6秒前
6秒前
大模型应助QHz采纳,获得10
6秒前
洛尚发布了新的文献求助10
7秒前
大模型应助十月采纳,获得10
7秒前
xx_y发布了新的文献求助10
7秒前
桐桐应助xxy采纳,获得10
7秒前
7秒前
陈七完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
怡然的怜烟应助galaxy采纳,获得30
9秒前
ck完成签到,获得积分10
9秒前
ZhaohuaXie应助善良如容采纳,获得20
10秒前
东风完成签到,获得积分10
11秒前
积极觅海完成签到,获得积分10
11秒前
kkkk发布了新的文献求助10
11秒前
方意完成签到 ,获得积分10
12秒前
gg完成签到,获得积分20
12秒前
Crest完成签到,获得积分10
12秒前
N1koooooo发布了新的文献求助10
12秒前
12秒前
乐乐应助zoe采纳,获得10
13秒前
布拿拿发布了新的文献求助10
13秒前
下雨天睡个懒觉完成签到,获得积分10
13秒前
参也发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794