调度(生产过程)
计算机科学
分布式计算
工业工程
工程类
运营管理
作者
Julio C. Serrano-Ruiz,Josefa Mula,Raúl Poler
标识
DOI:10.1016/j.jmsy.2021.09.011
摘要
Within the scheduling framework, the potential of digital twin (DT) technology, based on virtualisation and intelligent algorithms to simulate and optimise manufacturing, enables an interaction with processes and modifies their course of action in time synchrony in the event of disruptive events. This is a valuable capability for automating scheduling and confers it autonomy. Automatic and autonomous scheduling management can be encouraged by promoting the elimination of disruptions due to the appearance of defects, regardless of their origin. Hence the zero-defect manufacturing (ZDM) management model oriented towards zero-disturbance and zero-disruption objectives has barely been studied. Both strategies combine the optimisation of production processes by implementing DTs and promoting ZDM objectives to facilitate the modelling of automatic and autonomous scheduling systems. In this context, this particular vision of the scheduling process is called smart manufacturing scheduling (SMS). The aim of this paper is to review the existing scientific literature on the scheduling problem that considers the DT technology approach and the ZDM model to achieve self-management and reduce or eliminate the need for human intervention. Specifically, 68 research articles were identified and analysed. The main results of this paper are to: (i) find methodological trends to approach SMS models, where three trends were identified; i.e. using DT technology and the ZDM model, utilising other enabling digital technologies and incorporating inherent SMS capabilities into scheduling; (ii) present the main SMS alignment axes of each methodological trend; (iii) provide a map to classify the literature that comes the closest to the SMS concept; (iv) discuss the main findings and research gaps identified by this study. Finally, managerial implications and opportunities for further research are identified.
科研通智能强力驱动
Strongly Powered by AbleSci AI