Cavity Carbon-Nanopipette Electrodes for Dopamine Detection

化学 多巴胺 电极 碳纤维 纳米技术 材料科学 复合数 物理化学 生物 复合材料 神经科学
作者
Cheng Yang,Keke Hu,Dengchao Wang,Yasmine Zubi,Scott T. Lee,Pumidech Puthongkham,Michael V. Mirkin,B. Jill Venton
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (7): 4618-4624 被引量:97
标识
DOI:10.1021/acs.analchem.8b05885
摘要

Microelectrodes are typically used for neurotransmitter detection, but nanoelectrodes are not because there is a trade-off between spatial resolution and sensitivity that is dependent on surface area. Cavity carbon-nanopipette electrodes (CNPEs), with tip diameters of a few hundred nanometers, have been developed for nanoscale electrochemistry. Here, we characterize the electrochemical performance of CNPEs with fast-scan cyclic voltammetry (FSCV) for the first time. Dopamine detection using cavity CNPEs, with a depth equivalent to a few radii, is compared with that using open-tube CNPEs, an essentially infinite geometry. Open-tube CNPEs have very slow temporal responses that change over time as the liquid rises in the CNPE. However, a cavity CNPE has a fast temporal response to a bolus of dopamine that is not different from that of a traditional carbon-fiber microelectrode. Cavity CNPEs, with tip diameters of 200-400 nm, have high currents because the small cavity traps and increases the local dopamine concentration. The trapping also leads to an FSCV frequency-independent response and the appearance of cyclization peaks that are normally observed only with large concentrations of dopamine. CNPEs have high dopamine selectivity over ascorbic acid (AA) because of the repulsion of AA by the negative electric field at the holding potential and the irreversible redox reaction. In mouse-brain slices, cavity CNPEs detected exogenously applied dopamine, showing they do not clog in tissue. Thus, cavity CNPEs are promising neurochemical sensors that provide spatial resolution on the scale of hundreds of nanometers, which is useful for small model organisms or for locations near specific cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助yu采纳,获得10
刚刚
sci完成签到 ,获得积分10
1秒前
1秒前
sjyu1985完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
和谐幻桃发布了新的文献求助10
5秒前
吴锋完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
李健应助小周睡不饱采纳,获得10
7秒前
NexusExplorer应助yu采纳,获得10
7秒前
莺时发布了新的文献求助10
9秒前
甘草三七发布了新的文献求助20
9秒前
zm发布了新的文献求助10
9秒前
10秒前
Ava应助完美的jia采纳,获得10
10秒前
成就丹雪完成签到,获得积分10
11秒前
yu发布了新的文献求助10
12秒前
深情安青应助和谐幻桃采纳,获得10
13秒前
zhuzhu完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
李爱国应助浅浅挼蓝采纳,获得10
15秒前
找找找发布了新的文献求助10
17秒前
小马甲应助怡然的小蘑菇采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
李健应助graysonup采纳,获得10
20秒前
wdddd发布了新的文献求助10
21秒前
一个大西瓜应助祁乐安采纳,获得20
22秒前
和谐续发布了新的文献求助10
23秒前
苏晋强发布了新的文献求助10
24秒前
25秒前
25秒前
霸气侧漏发布了新的文献求助30
26秒前
27秒前
莺时完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
SCI完成签到 ,获得积分10
29秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5703115
求助须知:如何正确求助?哪些是违规求助? 5150045
关于积分的说明 15238827
捐赠科研通 4857664
什么是DOI,文献DOI怎么找? 2606591
邀请新用户注册赠送积分活动 1557766
关于科研通互助平台的介绍 1515585