A 3D Probabilistic Deep Learning System for Detection and Diagnosis of Lung Cancer Using Low-Dose CT Scans

计算机科学 卷积神经网络 结核(地质) 人工智能 恶性肿瘤 深度学习 肺癌筛查 肺癌 概率逻辑 机器学习 模式识别(心理学) 医学 病理 古生物学 生物
作者
Onur Özdemir,Rebecca L. Russell,Andrew A. Berlin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1419-1429 被引量:22
标识
DOI:10.1109/tmi.2019.2947595
摘要

We introduce a new computer aided detection and diagnosis system for lung cancer screening with low-dose CT scans that produces meaningful probability assessments. Our system is based entirely on 3D convolutional neural networks and achieves state-of-the-art performance for both lung nodule detection and malignancy classification tasks on the publicly available LUNA16 and Kaggle Data Science Bowl challenges. While nodule detection systems are typically designed and optimized on their own, we find that it is important to consider the coupling between detection and diagnosis components. Exploiting this coupling allows us to develop an end-to-end system that has higher and more robust performance and eliminates the need for a nodule detection false positive reduction stage. Furthermore, we characterize model uncertainty in our deep learning systems, a first for lung CT analysis, and show that we can use this to provide well-calibrated classification probabilities for both nodule detection and patient malignancy diagnosis. These calibrated probabilities informed by model uncertainty can be used for subsequent risk-based decision making towards diagnostic interventions or disease treatments, as we demonstrate using a probability-based patient referral strategy to further improve our results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重迎梦完成签到 ,获得积分10
刚刚
刚刚
南村孩童完成签到,获得积分10
刚刚
刚刚
1秒前
ChenWen发布了新的文献求助10
1秒前
再学一分钟完成签到,获得积分10
1秒前
2秒前
科研通AI6应助沐月采纳,获得10
2秒前
3秒前
3秒前
会飞的YU发布了新的文献求助10
3秒前
赘婿应助忠诚卫士采纳,获得10
4秒前
韩韩发布了新的文献求助10
5秒前
FXL完成签到,获得积分10
6秒前
6秒前
7秒前
ccc完成签到,获得积分10
7秒前
8秒前
三井发布了新的文献求助10
8秒前
qxy发布了新的文献求助10
9秒前
潇洒沛芹完成签到,获得积分10
9秒前
Maxine完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助迷路初兰采纳,获得10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
CLX。完成签到,获得积分10
13秒前
13秒前
13秒前
bkagyin应助自由聪展采纳,获得10
13秒前
善学以致用应助韩韩采纳,获得10
13秒前
13秒前
科研发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
F-超哥完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532789
求助须知:如何正确求助?哪些是违规求助? 4621444
关于积分的说明 14578210
捐赠科研通 4561414
什么是DOI,文献DOI怎么找? 2499282
邀请新用户注册赠送积分活动 1479215
关于科研通互助平台的介绍 1450443