Analyzing Data Granularity Levels for Insider Threat Detection Using Machine Learning

内部威胁 知情人 计算机科学 粒度 计算机安全 机器学习 集合(抽象数据类型) 人工智能 政治学 操作系统 程序设计语言 法学
作者
Duc C. Le,A. Nur Zincir‐Heywood,Malcolm I. Heywood
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 30-44 被引量:116
标识
DOI:10.1109/tnsm.2020.2967721
摘要

Malicious insider attacks represent one of the most damaging threats to networked systems of companies and government agencies. There is a unique set of challenges that come with insider threat detection in terms of hugely unbalanced data, limited ground truth, as well as behaviour drifts and shifts. This work proposes and evaluates a machine learning based system for user-centered insider threat detection. Using machine learning, analysis of data is performed on multiple levels of granularity under realistic conditions for identifying not only malicious behaviours, but also malicious insiders. Detailed analysis of popular insider threat scenarios with different performance measures are presented to facilitate the realistic estimation of system performance. Evaluation results show that the machine learning based detection system can learn from limited ground truth and detect new malicious insiders in unseen data with a high accuracy. Specifically, up to 85% of malicious insiders are detected at only 0.78% false positive rate. The system is also able to quickly detect the malicious behaviours, as low as 14 minutes after the first malicious action. Comprehensive result reporting allows the system to provide valuable insights to analysts in investigating insider threat cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助倷倷采纳,获得10
4秒前
要减肥的乐双完成签到 ,获得积分10
5秒前
ttrr完成签到,获得积分10
5秒前
7秒前
ag完成签到,获得积分10
9秒前
小二郎应助Jonah采纳,获得30
10秒前
11秒前
赘婿应助岁岁采纳,获得10
13秒前
橘温茶暖发布了新的文献求助10
13秒前
13秒前
14秒前
学术通zzz发布了新的文献求助10
14秒前
QL发布了新的文献求助26
14秒前
15秒前
鱼贝贝完成签到 ,获得积分10
15秒前
shea应助科研通管家采纳,获得10
15秒前
15秒前
Hello应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
哭泣灯泡应助科研通管家采纳,获得10
16秒前
科研通AI5应助芝士雪豹采纳,获得10
16秒前
wanz应助科研通管家采纳,获得20
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
17秒前
Jonah发布了新的文献求助30
19秒前
蔡蝶蝶发布了新的文献求助10
19秒前
科研通AI5应助酷酷的白桃采纳,获得10
19秒前
momo完成签到,获得积分10
19秒前
坚定的乐天完成签到,获得积分10
19秒前
秃头老透完成签到,获得积分10
19秒前
高分求助中
The world according to Garb 600
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822402
求助须知:如何正确求助?哪些是违规求助? 3364768
关于积分的说明 10432844
捐赠科研通 3083582
什么是DOI,文献DOI怎么找? 1696289
邀请新用户注册赠送积分活动 815704
科研通“疑难数据库(出版商)”最低求助积分说明 769255