Association of multiple metals with lipid markers against different exposure profiles: A population-based cross-sectional study in China

血脂谱 化学 人口 线性回归 载脂蛋白B 血脂 内科学 胆固醇 医学 生物化学 环境卫生 计算机科学 机器学习 有机化学
作者
Zhaoyang Li,Yali Xu,Zhijun Huang,Yue Wei,Jian Hou,Tengfei Long,Fei Wang,Xu Cheng,Yanying Duan,Xiang Chen,Hong Yuan,Minxue Shen,Meian He
出处
期刊:Chemosphere [Elsevier BV]
卷期号:264: 128505-128505 被引量:45
标识
DOI:10.1016/j.chemosphere.2020.128505
摘要

We sought to evaluate whether essential and toxic metals are cross-sectionally related to blood lipid levels using data among adults from Shimen (n = 564) and Huayuan (n = 637), two counties with different exposure profiles in Hunan province of China. Traditional and grouped weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were performed to assess association between exposure to a mixture of 22 metals measured in urine or plasma, and lipid markers. Most of the exposure levels of metals were significantly higher in Shimen area than those in Huayuan area (all P-values < 0.001). Traditional WQS regression analyses revealed that the WQS index were both significantly associated with lipid markers in two areas, except for the HDL-C. Grouped WQS revealed that essential metals group showed significantly positive associations with lipid markers except for HDL-C in Huayuan area, while toxic metals group showed significantly negative associations except for HDL-C and LDL-C in Huayuan area. There were no significant joint effects, but potential non-linear relationships between metals mixture and TC or LDL-C levels were observed in BKMR analyses. Although consistent significantly associations of zinc and titanium with TG levels were found in both areas, the metals closely related to other lipid markers were varied by sites. Additionally, the BKMR analyses revealed an inverse U shaped association of iron with LDL-C levels and interaction effects of zinc and cadmium on LDL-C in Huayuan area. The relationship between metal exposure and blood lipid were not identical against different exposure profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盏盏完成签到 ,获得积分10
刚刚
之甫关注了科研通微信公众号
1秒前
sp完成签到,获得积分10
1秒前
房天川发布了新的文献求助10
2秒前
纳米发布了新的文献求助10
3秒前
4秒前
Hello应助齐平露采纳,获得10
6秒前
LIN96T发布了新的文献求助10
6秒前
7秒前
7秒前
zzz完成签到 ,获得积分10
8秒前
8秒前
酷波er应助房天川采纳,获得10
8秒前
mika完成签到,获得积分10
9秒前
11秒前
慕青应助littleE采纳,获得10
12秒前
13秒前
旺帮主发布了新的文献求助10
13秒前
sophiapk完成签到,获得积分10
13秒前
13秒前
赫连烙发布了新的文献求助10
14秒前
mika发布了新的文献求助10
14秒前
拾柒关注了科研通微信公众号
15秒前
彧九完成签到 ,获得积分10
16秒前
大模型应助猪在天上飞采纳,获得10
17秒前
赵坤煊完成签到 ,获得积分10
17秒前
齐平露发布了新的文献求助10
17秒前
栗松琛发布了新的文献求助10
18秒前
19秒前
zyc发布了新的文献求助10
19秒前
华仔应助陈皮采纳,获得10
19秒前
CipherSage应助旺帮主采纳,获得10
20秒前
季安发布了新的文献求助10
20秒前
22秒前
ks完成签到,获得积分10
23秒前
23秒前
star完成签到 ,获得积分10
24秒前
四叶草QQ鱼完成签到 ,获得积分10
24秒前
gygg80完成签到,获得积分10
24秒前
褚青筠发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751805
求助须知:如何正确求助?哪些是违规求助? 4097093
关于积分的说明 12676505
捐赠科研通 3809744
什么是DOI,文献DOI怎么找? 2103432
邀请新用户注册赠送积分活动 1128592
关于科研通互助平台的介绍 1005521