数学
核希尔伯特再生空间
条件期望
度量(数据仓库)
条件独立性
核回归
核(代数)
一致性(知识库)
应用数学
操作员(生物学)
独立性(概率论)
条件概率分布
希尔伯特空间
口译(哲学)
正则条件概率
核方法
嵌入
随机变量
统计
离散数学
计算机科学
人工智能
回归
纯数学
数据挖掘
概率质量函数
支持向量机
程序设计语言
化学
抑制因子
基因
转录因子
生物化学
作者
Jun-Hyung Park,Krikamol Muandet
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:14
标识
DOI:10.48550/arxiv.2002.03689
摘要
We present an operator-free, measure-theoretic approach to the conditional mean embedding (CME) as a random variable taking values in a reproducing kernel Hilbert space. While the kernel mean embedding of unconditional distributions has been defined rigorously, the existing operator-based approach of the conditional version depends on stringent assumptions that hinder its analysis. We overcome this limitation via a measure-theoretic treatment of CMEs. We derive a natural regression interpretation to obtain empirical estimates, and provide a thorough theoretical analysis thereof, including universal consistency. As natural by-products, we obtain the conditional analogues of the maximum mean discrepancy and Hilbert-Schmidt independence criterion, and demonstrate their behaviour via simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI