Latent Mechanisms of Polarization Switching from In Situ Electron Microscopy Observations

材料科学 人工智能 介观物理学 模式识别(心理学) 生物系统 计算机科学 自编码 极化(电化学) 人工神经网络 物理 量子力学 生物 物理化学 化学
作者
Reinis Ignatāns,Maxim Ziatdinov,Rama K. Vasudevan,Mani Valleti,Vasiliki Tileli,Sergei V. Kalinin
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (23) 被引量:12
标识
DOI:10.1002/adfm.202100271
摘要

Abstract In situ scanning transmission electron microscopy enables observation of the domain dynamics in ferroelectric materials as a function of externally applied bias and temperature. The resultant data sets contain a wealth of information on polarization switching and phase transition mechanisms. However, identification of these mechanisms from observational data sets has remained a problem due to a large variety of possible configurations, many of which are degenerate. Here, an approach based on a combination of deep learning‐based semantic segmentation, rotationally invariant variational autoencoder (VAE), and non‐negative matrix factorization to enable learning of a latent space representation of the data with multiple real‐space rotationally equivalent variants mapped to the same latent space descriptors is introduced. By varying the size of training sub‐images in the VAE, the degree of complexity in the structural descriptors is tuned from simple domain wall detection to the identification of switching pathways. This yields a powerful tool for the exploration of the dynamic data in mesoscopic electron, scanning probe, optical, and chemical imaging. Moreover, this work adds to the growing body of knowledge of incorporating physical constraints into the machine and deep‐learning methods to improve learned descriptors of physical phenomena.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Asuna发布了新的文献求助10
刚刚
乐乐应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得30
2秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
科研菜j应助科研通管家采纳,获得20
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
小新应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
unqiue应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
Asuna完成签到,获得积分10
6秒前
沉静山兰发布了新的文献求助10
8秒前
10秒前
Orange应助加百莉采纳,获得10
11秒前
小王要努力完成签到,获得积分10
12秒前
蜗牛驳回了厚朴应助
13秒前
面团应助困困羊采纳,获得10
15秒前
15秒前
科研通AI6应助Jodie采纳,获得50
15秒前
BowieHuang应助小王要努力采纳,获得10
15秒前
16秒前
caixiaoz发布了新的文献求助10
17秒前
打打应助清秀的早晨采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566