材料科学
Crystal(编程语言)
格子Boltzmann方法
熔体流动指数
晶体生长
机械
边值问题
单晶硅
热力学
硅
物理
复合材料
数学分析
数学
计算机科学
程序设计语言
冶金
共聚物
聚合物
作者
Zhang Ni sup sup,Liu Ding sup sup,Feng Xue-Liang
出处
期刊:Chinese Physics
[Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
日期:2018-01-01
卷期号:67 (21): 218701-218701
被引量:3
标识
DOI:10.7498/aps.67.20180305
摘要
A two-dimensional axisymmetric immersed boundary thermal lattice Boltzmann (IB-TLB) model is presented to study the phase transition in Czochralski silicon crystal growth for improving the morphology of the melt-crystal interface and the crystal quality. Specifically, the Euler grid and the Lagrange grid are established, respectively. The melt-crystal interface is considered as an immersed boundary, and it is described by a series of Lagrange nodes. In this paper, the melt-crystal interface is tracked by the immersed boundary method, and the melt flow and heat transfer are simulated by the lattice Boltzmann method. The D2Q9 model is adopted to solve the axial velocity, radial velocity, swirling velocity and temperature of the melt. The finite difference method is used to solve the temperature distribution of the crystal. Then the solid-liquid transition in crystal growth with moving boundary is solved by the proposed IB-TLB model. The proposed model is validated by the solid-liquid phase transition benchmark. In addition, the flatness of the melt-crystal interface is evaluated by the mean value of the absolute value of the interface deviation and the standard deviation of the interface deviation. The effects of the process parameters on the morphology of melt-crystal interface, melt flow structure and temperature distribution are analyzed. The results show that the morphology of the melt-crystal interface is relevant to the interaction of the crystal pulling rate, the crystal rotation parameter, and the crucible rotation parameter. When the crystal and crucible rotate together, the deviation and fluctuation of the melt-crystal interface can be effectively adjusted, whether they rotate in the same direction or rotate in the opposite directions. And a flat melt-crystal interface can be obtained by appropriately configurating the ratio of crystal rotation parameter to crucible rotation parameter. Finally, according to a series of computations, it is found that when the crucible and crystal rotate in the opposite directions, the crystal rotation parameter and the crucible rotation parameter satisfy a functional relation, with a flat interface maintained. The obtained relationship has a certain reference for adjusting and improving the crystal growth parameters in practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI