Different Scenarios for the Prediction of Hospital Readmission of Diabetic Patients

健康信息学 医学 糖尿病 期限(时间) 计算机科学 医疗急救 急诊医学 重症监护医学 数据挖掘 护理部 公共卫生 物理 量子力学 内分泌学
作者
Cristiana Neto,Fábio Senra,Jaime Leite,Nuno Rei,Rui Rodrigues,Diana Ferreira,José Machado
出处
期刊:Journal of Medical Systems [Springer Science+Business Media]
卷期号:45 (1) 被引量:21
标识
DOI:10.1007/s10916-020-01686-4
摘要

Hospitals generate large amounts of data on a daily basis, but most of the time that data is just an overwhelming amount of information which never transitions to knowledge. Through the application of Data Mining techniques it is possible to find hidden relations or patterns among the data and convert those into knowledge that can further be used to aid in the decision-making of hospital professionals. This study aims to use information about patients with diabetes, which is a chronic (long-term) condition that occurs when the body does not produce enough or any insulin. The main purpose is to help hospitals improve their care with diabetic patients and consequently reduce readmission costs. An hospital readmission is an episode in which a patient discharged from a hospital is admitted again within a specified period of time (usually a 30 day period). This period allows hospitals to verify that their services are being performed correctly and also to verify the costs of these re-admissions. The goal of the study is to predict if a patient who suffers from diabetes will be readmitted, after being discharged, using Machine Leaning algorithms. The final results revealed that the most efficient algorithm was Random Forest with 0.898 of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助刻苦盼烟采纳,获得10
1秒前
蜡笔小z发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
脑洞疼应助ly采纳,获得10
4秒前
Au发布了新的文献求助30
6秒前
jingsihan完成签到,获得积分10
6秒前
setfgrew完成签到,获得积分20
7秒前
六朝2526完成签到,获得积分10
7秒前
8秒前
自信胡萝卜关注了科研通微信公众号
8秒前
Cc完成签到 ,获得积分10
8秒前
8秒前
Anby发布了新的文献求助10
8秒前
hubo完成签到,获得积分10
10秒前
10秒前
11秒前
开放芷天完成签到 ,获得积分20
12秒前
小柠檬发布了新的文献求助10
13秒前
14秒前
蔡徐坤发布了新的文献求助10
14秒前
Sean_sy完成签到,获得积分10
15秒前
helen发布了新的文献求助30
16秒前
16秒前
zho应助Garfinkel采纳,获得10
16秒前
17秒前
木头马尾应助科研通管家采纳,获得20
19秒前
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
ly发布了新的文献求助10
20秒前
思源应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823884
求助须知:如何正确求助?哪些是违规求助? 3366209
关于积分的说明 10439413
捐赠科研通 3085282
什么是DOI,文献DOI怎么找? 1697303
邀请新用户注册赠送积分活动 816312
科研通“疑难数据库(出版商)”最低求助积分说明 769533