Principled Hybrids of Generative and Discriminative Models

判别式 生成语法 计算机科学 生成模型 一般化 人工智能 机器学习 启发式 班级(哲学) 对象(语法) 模式识别(心理学) 透视图(图形) 数学 数学分析
作者
Julia Lasserre,C.M. Bishop,Tom Minka
标识
DOI:10.1109/cvpr.2006.227
摘要

When labelled training data is plentiful, discriminative techniques are widely used since they give excellent generalization performance. However, for large-scale applications such as object recognition, hand labelling of data is expensive, and there is much interest in semi-supervised techniques based on generative models in which the majority of the training data is unlabelled. Although the generalization performance of generative models can often be improved by ‘training them discriminatively’, they can then no longer make use of unlabelled data. In an attempt to gain the benefit of both generative and discriminative approaches, heuristic procedure have been proposed [2, 3] which interpolate between these two extremes by taking a convex combination of the generative and discriminative objective functions. In this paper we adopt a new perspective which says that there is only one correct way to train a given model, and that a ‘discriminatively trained’ generative model is fundamentally a new model [7]. From this viewpoint, generative and discriminative models correspond to specific choices for the prior over parameters. As well as giving a principled interpretation of ‘discriminative training’, this approach opens door to very general ways of interpolating between generative and discriminative extremes through alternative choices of prior. We illustrate this framework using both synthetic data and a practical example in the domain of multi-class object recognition. Our results show that, when the supply of labelled training data is limited, the optimum performance corresponds to a balance between the purely generative and the purely discriminative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyuyuyuyuyuyu完成签到,获得积分10
刚刚
二六完成签到,获得积分10
刚刚
刚刚
Micheal完成签到,获得积分10
刚刚
刚刚
周航完成签到,获得积分10
刚刚
刚刚
俏皮元珊发布了新的文献求助10
刚刚
Reef完成签到,获得积分10
刚刚
学术天后完成签到,获得积分10
刚刚
yulong发布了新的文献求助10
1秒前
1秒前
yangzhudi2333发布了新的文献求助10
1秒前
nacy完成签到,获得积分10
1秒前
1秒前
刘哔完成签到,获得积分10
2秒前
2秒前
树袋熊发布了新的文献求助10
3秒前
打打应助老王采纳,获得10
3秒前
4秒前
麦克阿瑟完成签到,获得积分10
4秒前
Peggy完成签到,获得积分10
4秒前
leo完成签到,获得积分10
4秒前
4秒前
zh完成签到,获得积分20
4秒前
领导范儿应助juphen2采纳,获得10
5秒前
Becca发布了新的文献求助50
5秒前
5秒前
Dong发布了新的文献求助10
5秒前
5秒前
大佬带带我啊完成签到,获得积分10
5秒前
小琪猪完成签到,获得积分10
5秒前
CipherSage应助阿鹿采纳,获得10
5秒前
5秒前
务实曼冬发布了新的文献求助10
5秒前
6秒前
完美世界应助直率海亦采纳,获得10
6秒前
斯文败类应助LYL采纳,获得10
6秒前
豌豆射手发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A new approach to VOF-based interface capturing methods for incompressible and compressible flow 800
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5248329
求助须知:如何正确求助?哪些是违规求助? 4413211
关于积分的说明 13736349
捐赠科研通 4284234
什么是DOI,文献DOI怎么找? 2350840
邀请新用户注册赠送积分活动 1347848
关于科研通互助平台的介绍 1307366