Urine supernatant reveals a signature that predicts survival in clear‐cell renal cell carcinoma

列线图 肾透明细胞癌 医学 转录组 基因签名 尿 肿瘤科 内科学 肾细胞癌 生物信息学 癌症研究 基因 基因表达 生物 遗传学
作者
Jorge Daza,Bérengère Salomé,Kennedy E. Okhawere,Octavia Bane,Kirolos N. Meilika,Talia G. Korn,Jingjing Qi,Hui Xe,Manishkumar Patel,Rachel Brody,Seunghee Kim‐Schulze,John P. Sfakianos,Sara Lewis,Jordan Rich,Laura Zuluaga,Ketan K. Badani,Amir Horowitz
出处
期刊:BJUI [Wiley]
卷期号:132 (1): 75-83 被引量:5
标识
DOI:10.1111/bju.15989
摘要

To profile the cell-free urine supernatant and plasma of a small cohort of clear-cell renal cell carcinoma (ccRCC) patients by measuring the relative concentrations of 92 proteins related to inflammation. Using The Cancer Genome Atlas (TCGA), we then performed a targeted mRNA analysis of genes encoding the above proteins and defined their effects on overall survival (OS).Samples were collected prospectively from ccRCC patients. A multiplex proximity extension assay was used to measure the concentrations of 92 inflammation-related proteins in cell-free urine supernatants and plasma. Transcriptomic and clinical information from ccRCC patients was obtained from TCGA. Unsupervised clustering and differential protein expression analyses were performed on protein concentration data. Targeted mRNA analysis on genes encoding significant differentially expressed proteins was performed using TCGA. Backward stepwise regression analyses were used to build a nomogram. The performance of the nomogram and clinical benefit was assessed by discrimination and calibration, and a decision curve analysis, respectively.Unsupervised clustering analysis revealed inflammatory signatures in the cell-free urine supernatant of ccRCC patients. Backward stepwise regressions using TCGA data identified transcriptomic risk factors and risk groups associated with OS. A nomogram to predict 2-year and 5-year OS was developed using these risk factors. The decision curve analysis showed that our model was associated with a net benefit improvement compared to the treat-all/none strategies.We defined four novel biomarkers using proteomic and transcriptomic data that distinguish severity of prognosis in ccRCC. We showed that these biomarkers can be used in a model to predict 2-year and 5-year OS in ccRCC across different tumour stages. This type of analysis, if validated in the future, provides non-invasive prognostic information that could inform either management or surveillance strategies for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
霹雳枕头发布了新的文献求助10
1秒前
4秒前
SciGPT应助wxinli采纳,获得10
6秒前
白云发布了新的文献求助10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
HEAUBOOK应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得50
9秒前
bc应助科研通管家采纳,获得30
9秒前
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
bc应助科研通管家采纳,获得30
9秒前
边边完成签到 ,获得积分10
13秒前
Ava应助秋秋秋采纳,获得10
14秒前
ni发布了新的文献求助10
14秒前
科研通AI5应助纯真的晓啸采纳,获得10
15秒前
15秒前
大鲨鱼完成签到 ,获得积分10
16秒前
22秒前
kyt完成签到,获得积分10
24秒前
26秒前
Bystander完成签到 ,获得积分10
26秒前
anitachiu1104发布了新的文献求助10
27秒前
Ava应助奥利奥饼采纳,获得10
27秒前
dud完成签到,获得积分10
29秒前
29秒前
ding应助我是李白鹤采纳,获得10
30秒前
完美世界应助TGR采纳,获得10
31秒前
科研通AI2S应助Krositon采纳,获得10
32秒前
32秒前
辛勤的刺猬完成签到 ,获得积分10
35秒前
lanadalray发布了新的文献求助10
36秒前
39秒前
milk完成签到 ,获得积分10
39秒前
39秒前
qiongqiong完成签到,获得积分10
41秒前
41秒前
43秒前
TGR发布了新的文献求助10
44秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782058
求助须知:如何正确求助?哪些是违规求助? 3327527
关于积分的说明 10232030
捐赠科研通 3042501
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799539
科研通“疑难数据库(出版商)”最低求助积分说明 758825