清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Urine supernatant reveals a signature that predicts survival in clear‐cell renal cell carcinoma

列线图 肾透明细胞癌 医学 转录组 基因签名 尿 肿瘤科 内科学 肾细胞癌 生物信息学 癌症研究 基因 基因表达 生物 遗传学
作者
Jorge Daza,Bérengère Salomé,Kennedy E. Okhawere,Octavia Bane,Kirolos N. Meilika,Talia G. Korn,Jingjing Qi,Hui Xe,Manishkumar Patel,Rachel Brody,Seunghee Kim‐Schulze,John P. Sfakianos,Sara Lewis,Jordan Rich,Laura Zuluaga,Ketan K. Badani,Amir Horowitz
出处
期刊:BJUI [Wiley]
卷期号:132 (1): 75-83 被引量:5
标识
DOI:10.1111/bju.15989
摘要

To profile the cell-free urine supernatant and plasma of a small cohort of clear-cell renal cell carcinoma (ccRCC) patients by measuring the relative concentrations of 92 proteins related to inflammation. Using The Cancer Genome Atlas (TCGA), we then performed a targeted mRNA analysis of genes encoding the above proteins and defined their effects on overall survival (OS).Samples were collected prospectively from ccRCC patients. A multiplex proximity extension assay was used to measure the concentrations of 92 inflammation-related proteins in cell-free urine supernatants and plasma. Transcriptomic and clinical information from ccRCC patients was obtained from TCGA. Unsupervised clustering and differential protein expression analyses were performed on protein concentration data. Targeted mRNA analysis on genes encoding significant differentially expressed proteins was performed using TCGA. Backward stepwise regression analyses were used to build a nomogram. The performance of the nomogram and clinical benefit was assessed by discrimination and calibration, and a decision curve analysis, respectively.Unsupervised clustering analysis revealed inflammatory signatures in the cell-free urine supernatant of ccRCC patients. Backward stepwise regressions using TCGA data identified transcriptomic risk factors and risk groups associated with OS. A nomogram to predict 2-year and 5-year OS was developed using these risk factors. The decision curve analysis showed that our model was associated with a net benefit improvement compared to the treat-all/none strategies.We defined four novel biomarkers using proteomic and transcriptomic data that distinguish severity of prognosis in ccRCC. We showed that these biomarkers can be used in a model to predict 2-year and 5-year OS in ccRCC across different tumour stages. This type of analysis, if validated in the future, provides non-invasive prognostic information that could inform either management or surveillance strategies for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天将明完成签到 ,获得积分10
4秒前
woods完成签到,获得积分10
4秒前
张雨欣完成签到 ,获得积分10
14秒前
leapper完成签到 ,获得积分10
14秒前
好运连连完成签到 ,获得积分10
20秒前
xiaozou55完成签到 ,获得积分10
21秒前
许之北完成签到 ,获得积分10
33秒前
爱静静应助科研通管家采纳,获得10
36秒前
顾矜应助科研通管家采纳,获得10
36秒前
猪仔5号完成签到 ,获得积分10
38秒前
Lexi完成签到 ,获得积分10
40秒前
紫陌完成签到,获得积分0
41秒前
hanliulaixi完成签到 ,获得积分10
42秒前
拉长的秋白完成签到 ,获得积分10
50秒前
千陽完成签到 ,获得积分10
51秒前
ceixxxxx发布了新的文献求助10
51秒前
123完成签到 ,获得积分10
1分钟前
bellapp完成签到 ,获得积分10
1分钟前
L晨晨完成签到 ,获得积分10
1分钟前
1分钟前
红果果完成签到,获得积分10
1分钟前
十七完成签到 ,获得积分10
1分钟前
ceixxxxx完成签到,获得积分20
1分钟前
冬冬冬完成签到,获得积分10
1分钟前
醉生梦死完成签到 ,获得积分10
1分钟前
FF完成签到 ,获得积分10
1分钟前
赵李锋完成签到,获得积分10
1分钟前
云峤完成签到 ,获得积分10
1分钟前
小文子完成签到 ,获得积分10
1分钟前
Arctic完成签到 ,获得积分10
1分钟前
MC123完成签到,获得积分10
2分钟前
MS903完成签到 ,获得积分10
2分钟前
忧伤的二锅头完成签到 ,获得积分10
2分钟前
一路狂奔等不了完成签到 ,获得积分10
2分钟前
CGFHEMAN完成签到 ,获得积分10
2分钟前
缥缈的觅风完成签到 ,获得积分10
2分钟前
江南烟雨如笙完成签到 ,获得积分10
2分钟前
CJW完成签到 ,获得积分10
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4344492
求助须知:如何正确求助?哪些是违规求助? 3851335
关于积分的说明 12021541
捐赠科研通 3492889
什么是DOI,文献DOI怎么找? 1916734
邀请新用户注册赠送积分活动 959659
科研通“疑难数据库(出版商)”最低求助积分说明 859752