Synchronous fabrication of Ru single atoms and RuO2 on hierarchical TiO2 spheres for enhanced photocatalytic coproduction of H2 and benzaldehyde

苯甲醛 光催化 苯甲醇 纳米颗粒 分解水 水溶液 化学工程 制氢 材料科学 化学 纳米技术 光化学 催化作用 有机化学 工程类
作者
Bing Xing,Ting Wang,Ziqiang Zheng,Shoujie Liu,Junjie Mao,Can Li,Benxia Li
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:461: 141871-141871 被引量:50
标识
DOI:10.1016/j.cej.2023.141871
摘要

Photocatalytic water splitting coupled with selective organic oxidation can simultaneously produce clean H2 fuel and value-added chemicals by effective utilization of photoexcited electrons and holes. However, significant challenges remain in developing the dual-function photocatalysts with high performance. Herein, well-dispersed Ru single atoms (RuSA) and RuO2 nanoparticles are synchronously anchored on hierarchical TiO2 sub-microspheres to fabricate a superb dual-function photocatalyst (RuSA-RuO2/TiO2) for accelerating the coproduction of hydrogen and benzaldehyde from benzyl-alcohol aqueous solution. The hierarchical TiO2 spheres with a high specific surface area act not only a light-harvesting material but also a favorable support for exposing more catalytic sites. The one-step modification of dual cocatalysts on semiconductor is more attractive than the complicated multi-step process. Under a simulated sunlight, the yield rates of hydrogen and benzaldehyde reach up to 2.91 and 1.42 mmol·gcat-1·h−1, respectively, much higher than those obtained from the prepared photocatalysts with other modifications. Mechanistic investigations by control experiments, detailed characterizations and theoretical calculations elucidate the synergetic catalysis of Ru single atoms and RuO2 nanoparticles on TiO2, which facilitates the separation of photo-generated charge carriers as well as affords the specific active sites for hydrogen evolution and benzaldehyde production. This work provides a facile strategy to develop high-performance photocatalysts for sustainable energy conversion as well as a new insight into the synergistic catalysis of different active sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
菜热热完成签到,获得积分10
2秒前
2秒前
孙一完成签到,获得积分10
3秒前
wxshh发布了新的文献求助10
4秒前
jgpiao发布了新的文献求助10
4秒前
张典政发布了新的文献求助10
6秒前
科研通AI5应助heli采纳,获得10
6秒前
6秒前
mt1314发布了新的文献求助30
6秒前
Mira完成签到,获得积分10
7秒前
乐观道之完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI5应助典雅的黄豆采纳,获得10
9秒前
bkagyin应助饭团和阿毛采纳,获得10
9秒前
舒服的如蓉完成签到,获得积分10
10秒前
啦哈喽哈哈完成签到 ,获得积分10
11秒前
wangcc发布了新的文献求助10
12秒前
12秒前
CodeCraft应助艺馨采纳,获得10
12秒前
彩虹天堂发布了新的文献求助10
13秒前
qin完成签到 ,获得积分10
14秒前
SciGPT应助G7sunny采纳,获得30
14秒前
松鼠完成签到,获得积分20
14秒前
秋殇浅寞发布了新的文献求助10
14秒前
wuuu完成签到,获得积分10
14秒前
小马甲应助donson采纳,获得10
15秒前
15秒前
炸鸡加热发布了新的文献求助10
15秒前
Jane发布了新的文献求助10
16秒前
smiling完成签到 ,获得积分10
17秒前
文献完成签到 ,获得积分10
17秒前
天天快乐应助张典政采纳,获得10
18秒前
搜集达人应助科研小趴菜采纳,获得10
18秒前
18秒前
19秒前
19秒前
pkaq完成签到,获得积分10
19秒前
20秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828264
求助须知:如何正确求助?哪些是违规求助? 3370626
关于积分的说明 10464223
捐赠科研通 3090515
什么是DOI,文献DOI怎么找? 1700455
邀请新用户注册赠送积分活动 817837
科研通“疑难数据库(出版商)”最低求助积分说明 770506