A diagnostic model based on bioinformatics and machine learning to differentiate bipolar disorder from schizophrenia and major depressive disorder

接收机工作特性 双相情感障碍 重性抑郁障碍 精神分裂症(面向对象编程) Lasso(编程语言) 支持向量机 微阵列 微阵列分析技术 人工智能 机器学习 心理学 生物信息学 医学 基因 精神科 计算机科学 生物 基因表达 遗传学 认知 万维网
作者
Jing Shen,Chenxu Xiao,Xiwen Qiao,Qichen Zhu,Hanfei Yan,Julong Pan,Yu Feng
标识
DOI:10.1038/s41537-023-00417-1
摘要

Bipolar disorder (BD) showed the highest suicide rate of all psychiatric disorders, and its underlying causative genes and effective treatments remain unclear. During diagnosis, BD is often confused with schizophrenia (SC) and major depressive disorder (MDD), due to which patients may receive inadequate or inappropriate treatment, which is detrimental to their prognosis. This study aims to establish a diagnostic model to distinguish BD from SC and MDD in multiple public datasets through bioinformatics and machine learning and to provide new ideas for diagnosing BD in the future. Three brain tissue datasets containing BD, SC, and MDD were chosen from the Gene Expression Omnibus database (GEO), and two peripheral blood datasets were selected for validation. Linear Models for Microarray Data (Limma) analysis was carried out to identify differentially expressed genes (DEGs). Functional enrichment analysis and machine learning were utilized to identify. Least absolute shrinkage and selection operator (LASSO) regression was employed for identifying candidate immune-associated central genes, constructing protein-protein interaction networks (PPI), building artificial neural networks (ANN) for validation, and plotting receiver operating characteristic curve (ROC curve) for differentiating BD from SC and MDD and creating immune cell infiltration to study immune cell dysregulation in the three diseases. RBM10 was obtained as a candidate gene to distinguish BD from SC. Five candidate genes (LYPD1, HMBS, HEBP2, SETD3, and ECM2) were obtained to distinguish BD from MDD. The validation was performed by ANN, and ROC curves were plotted for diagnostic value assessment. The outcomes exhibited the prediction model to have a promising diagnostic value. In the immune infiltration analysis, Naive B, Resting NK, and Activated Mast Cells were found to be substantially different between BD and SC. Naive B and Memory B cells were prominently variant between BD and MDD. In this study, RBM10 was found as a candidate gene to distinguish BD from SC; LYPD1, HMBS, HEBP2, SETD3, and ECM2 serve as five candidate genes to distinguish BD from MDD. The results obtained from the ANN network showed that these candidate genes could perfectly distinguish BD from SC and MDD (76.923% and 81.538%, respectively).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助12采纳,获得10
1秒前
Hover发布了新的文献求助10
1秒前
等下完这场雨完成签到,获得积分10
1秒前
木头马尾发布了新的文献求助20
2秒前
机灵柚子应助ylq采纳,获得10
3秒前
sunyuice完成签到 ,获得积分10
3秒前
Owen应助小巧的成败采纳,获得10
3秒前
白大褂的路完成签到 ,获得积分10
3秒前
领导范儿应助柏康娜采纳,获得10
3秒前
张卓关注了科研通微信公众号
3秒前
肝胆外科医生完成签到,获得积分10
4秒前
4秒前
敏静完成签到,获得积分10
5秒前
5秒前
6秒前
峰峰的完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
CodeCraft应助Hover采纳,获得10
9秒前
颇黎完成签到,获得积分10
9秒前
9秒前
王哇噻发布了新的文献求助10
9秒前
薯条狂热爱好者完成签到 ,获得积分10
9秒前
10秒前
Tim发布了新的文献求助30
11秒前
雨淋沐风发布了新的文献求助10
11秒前
嗡嗡嗡发布了新的文献求助10
12秒前
SYT完成签到,获得积分10
13秒前
JKL发布了新的文献求助10
13秒前
13秒前
12发布了新的文献求助10
13秒前
我是老大应助meimei采纳,获得10
13秒前
Yuchaoo发布了新的文献求助10
14秒前
summer发布了新的文献求助10
14秒前
李健的小迷弟应助黑白采纳,获得10
15秒前
峰峰的发布了新的文献求助10
15秒前
goofs发布了新的文献求助10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814820
求助须知:如何正确求助?哪些是违规求助? 3358947
关于积分的说明 10398754
捐赠科研通 3076401
什么是DOI,文献DOI怎么找? 1689803
邀请新用户注册赠送积分活动 813303
科研通“疑难数据库(出版商)”最低求助积分说明 767599