LG-DBNet: Local and Global Dual-Branch Network for SAR Image Denoising

合成孔径雷达 降噪 计算机科学 图像去噪 遥感 对偶(语法数字) 人工智能 雷达成像 计算机视觉 地质学 电信 雷达 文学类 艺术
作者
Shuaiqi Liu,Shikang Tian,Yuhang Zhao,Qi Hu,Bing Li,Yudong Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:11
标识
DOI:10.1109/tgrs.2024.3362510
摘要

Synthetic aperture radar (SAR) tends to be seriously affected by speckle noise due to its inherent imaging characteristics, which brings great challenges to the high-level visualization task of SAR images. Therefore, speckle suppression plays a crucial role in remote sensing image processing. Attention-based SAR image denoising algorithms frequently struggle to capture rich feature information and face challenges in balancing the trade-off between denoising and preserving texture details. To solve the above problems, this paper constructs a local and global dual-branch network (LG-DBNet) for SAR image denoising. This network can effectively suppress speckle noise while fully retaining the detail information of the original image. Firstly, the shallow features are extracted through simple convolution. Then, a dual-branch structure constructed using different attention modules is used to extract deep features from SAR images. Specifically, one branch performs local deep feature extraction of an image through a hybrid attention module built by a convolutional neural network (CNN), while the other branch utilizes a superposition of self-attention mechanisms for global deep feature extraction of the image. Finally, the final denoised image is generated through global residual learning. LG-DBNet can effectively extract the local and global image information through the dual-branch structure, and further focus on the noise information, which can better retain the texture information of the image while effectively denoising. The experimental results show that compared with the state-of-the-art SAR image denoising algorithms, the proposed algorithm not only improves on various objective indexes, but also shows great advantages in the visual effect after denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助开心蘑菇采纳,获得10
刚刚
龙亮完成签到,获得积分10
1秒前
丘比特应助黑夜的冰之歌采纳,获得10
1秒前
稳重完成签到 ,获得积分10
2秒前
cyndifly发布了新的文献求助10
4秒前
爆米花应助Lohie采纳,获得10
5秒前
英俊的铭应助ACMI采纳,获得10
6秒前
科研通AI6应助我不到啊采纳,获得10
6秒前
leapper完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助20
8秒前
难过梦山完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
10秒前
啵啵发布了新的文献求助10
11秒前
11秒前
田様应助南木采纳,获得10
11秒前
12秒前
FACEISIN发布了新的文献求助10
12秒前
Mat发布了新的文献求助10
13秒前
aassdj完成签到 ,获得积分10
13秒前
上官若男应助幽默的雅寒采纳,获得30
13秒前
搞怪雨兰完成签到,获得积分10
14秒前
14秒前
mouxq发布了新的文献求助10
15秒前
清鱼坊发布了新的文献求助10
17秒前
乐乐应助奋斗觅海采纳,获得10
17秒前
18秒前
大佐发布了新的文献求助10
19秒前
zxy给zxy的求助进行了留言
19秒前
小蘑菇应助Dyson Hou采纳,获得10
20秒前
搞怪雨兰发布了新的文献求助10
20秒前
21秒前
Neil完成签到,获得积分10
22秒前
Owen应助风清扬采纳,获得10
22秒前
山260完成签到 ,获得积分10
22秒前
cyndifly完成签到 ,获得积分10
23秒前
活泼的冬寒完成签到,获得积分10
23秒前
研友_LmbAan发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921720
求助须知:如何正确求助?哪些是违规求助? 4192827
关于积分的说明 13023256
捐赠科研通 3964364
什么是DOI,文献DOI怎么找? 2172939
邀请新用户注册赠送积分活动 1190594
关于科研通互助平台的介绍 1099777