Thin-film transistor for temporal self-adaptive reservoir computing with closed-loop architecture

循环(图论) 计算机科学 建筑 晶体管 薄膜晶体管 分布式计算 材料科学 纳米技术 电气工程 工程类 数学 图层(电子) 电压 艺术 组合数学 视觉艺术
作者
Rui-Qi Chen,Haozhang Yang,Ruiyi Li,Guihai Yu,Yizhou Zhang,Junchen Dong,Dedong Han,Zheng Zhou,Peng Huang,Lifeng Liu,X. Q. Liu,Jinfeng Kang
出处
期刊:Science Advances [American Association for the Advancement of Science]
卷期号:10 (7)
标识
DOI:10.1126/sciadv.adl1299
摘要

Reservoir computing is a powerful neural network–based computing paradigm for spatiotemporal signal processing. Recently, physical reservoirs have been explored based on various electronic devices with outstanding efficiency. However, the inflexible temporal dynamics of these reservoirs have posed fundamental restrictions in processing spatiotemporal signals with various timescales. Here, we fabricated thin-film transistors with controllable temporal dynamics, which can be easily tuned with electrical operation signals and showed excellent cycle-to-cycle uniformity. Based on this, we constructed a temporal adaptive reservoir capable of extracting temporal information of multiple timescales, thereby achieving improved accuracy in the human-activity-recognition task. Moreover, by leveraging the former computing output to modify the hyperparameters, we constructed a closed-loop architecture that equips the reservoir computing system with temporal self-adaptability according to the current input. The adaptability is demonstrated by accurate real-time recognition of objects moving at diverse speed levels. This work provides an approach for reservoir computing systems to achieve real-time processing of spatiotemporal signals with compound temporal characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanqian5566发布了新的文献求助10
1秒前
1秒前
1秒前
务实大神发布了新的文献求助10
1秒前
1秒前
yulijuan发布了新的文献求助10
2秒前
CipherSage应助沉静的龙猫采纳,获得10
2秒前
lizhiqian2024发布了新的文献求助10
2秒前
wth发布了新的文献求助10
2秒前
FlipFlops发布了新的文献求助10
2秒前
大模型应助Lx_B采纳,获得10
3秒前
多宝鱼发布了新的文献求助10
3秒前
龙乐完成签到,获得积分10
3秒前
老王发布了新的文献求助10
3秒前
船长发布了新的文献求助30
4秒前
4秒前
陈芮发布了新的文献求助10
4秒前
传奇3应助GAOGONGZI采纳,获得10
4秒前
5秒前
6秒前
qingyue完成签到,获得积分10
6秒前
6秒前
6秒前
蝰蛇发布了新的文献求助10
6秒前
老实芭蕉应助大马哥采纳,获得10
7秒前
stevenlight完成签到,获得积分20
7秒前
7秒前
LZ7_发布了新的文献求助10
7秒前
hhnicai完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
Ukuleleen完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
科研通AI5应助一二三采纳,获得10
10秒前
白衣发布了新的文献求助10
10秒前
Xenia完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790659
求助须知:如何正确求助?哪些是违规求助? 3335459
关于积分的说明 10274985
捐赠科研通 3051977
什么是DOI,文献DOI怎么找? 1674949
邀请新用户注册赠送积分活动 802929
科研通“疑难数据库(出版商)”最低求助积分说明 761001