Multi-scale residual neural network with enhanced gated recurrent unit for fault diagnosis of rolling bearing

残余物 方位(导航) 人工神经网络 卷积神经网络 稳健性(进化) 深度学习 计算机科学 Softmax函数 特征学习 模式识别(心理学) 人工智能 机器学习 算法 基因 化学 生物化学
作者
Weiqing Liao,Wenlong Fu,Ke Yang,Chao Tan,Yuguang Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056114-056114 被引量:13
标识
DOI:10.1088/1361-6501/ad282a
摘要

Abstract As the key component of rotating machinery, effective and reliable fault diagnosis of rolling bearing is particularly critical for promoting production safety and economic benefits. The powerful representation learning ability of convolutional neural network (CNN) enables it to effectively extract fault information from vibration signals of rolling bearing. Nevertheless, challenges are faced by CNN in extracting features at multi-scale and capturing temporal features. With regard to this issue, a hybrid deep learning model that incorporates the multi-scale residual neural network (MSRN) with the enhanced gated recurrent unit (EGRU), namely MSRN-EGRU, is proposed in this paper. To begin with, MSRN is designed by introducing multi-scale structure and residual connections into CNN for extracting local features effectively and improving the feature representation of the model. Then, the extracted local features are input into EGRU to further extract temporal features, where EGRU is proposed by improving GRU structure and embedding scaled exponential liner unit (SELU), which enhances the nonlinear modeling and memory ability. Eventually, the obtained features are processed by α -Dropout and global average pooling before being inputted into the softmax layer for fault diagnosis. To validate the effectiveness of the proposed model, three baseline models and two ablation models were employed for comparative experiments with two bearing datasets. The experimental results reveal that the proposed model achieves commendable performance in terms of accuracy, robustness, and convergence for fault diagnosis of rolling bearing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路的含桃完成签到 ,获得积分10
刚刚
刚刚
旅行者完成签到 ,获得积分10
1秒前
ccccchen完成签到,获得积分10
2秒前
如意白亦完成签到,获得积分20
2秒前
科目三应助淡定的晓刚采纳,获得10
2秒前
3秒前
jx完成签到,获得积分10
4秒前
lixia完成签到 ,获得积分10
5秒前
badercao完成签到,获得积分10
6秒前
动人的剑完成签到,获得积分10
6秒前
康德完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
854fycchjh完成签到,获得积分10
8秒前
断桥烟雨完成签到,获得积分10
9秒前
留白发布了新的文献求助10
9秒前
9秒前
sdfwsdfsd完成签到,获得积分10
9秒前
健壮不斜完成签到 ,获得积分10
9秒前
10秒前
JOKER完成签到,获得积分10
11秒前
12秒前
小阿鱼完成签到,获得积分10
12秒前
可怜的游戏完成签到,获得积分10
12秒前
机灵冬天发布了新的文献求助10
13秒前
15秒前
16秒前
16秒前
party12完成签到 ,获得积分10
16秒前
Melody发布了新的文献求助10
17秒前
Kevin完成签到,获得积分10
17秒前
刀刀发布了新的文献求助10
18秒前
爆米花应助研友_8QxayZ采纳,获得10
18秒前
cym666666完成签到,获得积分10
18秒前
nzq完成签到 ,获得积分10
19秒前
19秒前
20秒前
淡定的晓刚完成签到,获得积分10
20秒前
Zhusy完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789767
求助须知:如何正确求助?哪些是违规求助? 5723251
关于积分的说明 15475510
捐赠科研通 4917557
什么是DOI,文献DOI怎么找? 2647071
邀请新用户注册赠送积分活动 1594728
关于科研通互助平台的介绍 1549205