Optimizing Parcel Locker Selection in Campus Last-Mile Logistics: A Path Planning Model Integrating Spatial–Temporal Behavior Analysis and Kernel Density Estimation

选择(遗传算法) 核密度估计 计算机科学 最后一英里(运输) 英里 运筹学 路径(计算) 地理 统计 工程类 数学 人工智能 大地测量学 估计员 程序设计语言
作者
Huizi Zhang,Peiqun Lin,Liang Zou
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (12): 6607-6607
标识
DOI:10.3390/app15126607
摘要

The last-mile delivery crisis, exacerbated by the surge in e-commerce demands, continues to face persistent challenges. Logistics companies often overlook the possibility that recipients may not be at the designated delivery location during courier distribution, leading to interruptions in the delivery process and spatiotemporal mismatches between couriers and users. Parcel lockers (PLCs), as a contactless self-pickup solution, mitigate these mismatches but suffer from low utilization rates and user dissatisfaction caused by detour-heavy pickup paths. Existing PLC strategies prioritize operational costs over behavioral preferences, limiting their real-world applicability. To address this gap, we propose a user-centric path planning model that integrates spatiotemporal trajectory mining with kernel density estimation (KDE) to optimize PLC selection and conducted a small-scale experimental study. Our framework integrated user behavior and package characteristics elements: (1) Behavioral filtering: This extracted walking trajectories (speed of 4–5 km/h) from 1856 GPS tracks of four campus users, capturing daily mobility patterns. (2) Hotspot clustering: This identified 82% accuracy-aligned activity hotspots (50 m radius; ≥1 h stay) via spatiotemporal aggregation. (3) KDE-driven decision-making: This dynamically weighed parcel attributes (weight–volume–urgency ratio) and route regularity to minimize detour distances. Key results demonstrate the model’s effectiveness: a 68% reduction in detour distance for User A was achieved, with similar improvements across all test subjects. This study enhances last-mile logistics by integrating user behavior analytics with operational optimization, providing a scalable tool for smart cities. The KDE-based framework has proven effective in campus environments. Its future potential for expansion to various urban settings, ranging from campuses to metropolitan hubs, supports carbon-neutral goals by reducing unnecessary travel, demonstrating its potential for application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KinaC02发布了新的文献求助10
刚刚
ly发布了新的文献求助10
刚刚
NexusExplorer应助柱zzz采纳,获得10
刚刚
ramon发布了新的文献求助10
刚刚
刚刚
Jasper应助语霖仙采纳,获得10
刚刚
西宁发布了新的文献求助10
刚刚
Orange应助ava采纳,获得10
刚刚
1秒前
今后应助黄耀采纳,获得10
2秒前
2秒前
2秒前
striveboyha完成签到,获得积分10
3秒前
ZJX1947完成签到,获得积分10
3秒前
4秒前
strive发布了新的文献求助10
4秒前
雪白青发布了新的文献求助10
4秒前
4秒前
QQ发布了新的文献求助10
4秒前
希昂yeee完成签到,获得积分10
4秒前
CuiJing关注了科研通微信公众号
5秒前
5秒前
5秒前
Plusonezzz发布了新的文献求助30
6秒前
6秒前
科研小白完成签到,获得积分10
6秒前
striveboyha发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
打打应助斯文墨镜采纳,获得10
7秒前
ly完成签到,获得积分10
7秒前
科研通AI6应助现实的从蓉采纳,获得10
7秒前
7秒前
8秒前
9秒前
霸气的玉兰完成签到 ,获得积分10
9秒前
藏獒完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786