Dynamical-generative downscaling of climate model ensembles

缩小尺度 计算机科学 气候模式 环境科学 气候变化 气候学 气象学 地理 地质学 海洋学
作者
Ignacio Lopez‐Gomez,Zhong Wan,Leonardo Zepeda-Núñez,Tapio Schneider,John C. Anderson,Fei Sha
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (17)
标识
DOI:10.1073/pnas.2420288122
摘要

Regional high-resolution climate projections are crucial for many applications, such as agriculture, hydrology, and natural hazard risk assessment. Dynamical downscaling, the state-of-the-art method to produce localized future climate information, involves running a regional climate model (RCM) driven by an Earth System Model (ESM), but it is too computationally expensive to apply to large climate projection ensembles. We propose an approach combining dynamical downscaling with generative AI to reduce the cost and improve the uncertainty estimates of downscaled climate projections. In our framework, an RCM dynamically downscales ESM output to an intermediate resolution, followed by a generative diffusion model that further refines the resolution to the target scale. This approach leverages the generalizability of physics-based models and the sampling efficiency of diffusion models, enabling the downscaling of large multimodel ensembles. We evaluate our method against dynamically downscaled climate projections from the Coupled Model Intercomparison Project 6 (CMIP6) ensemble. Our results demonstrate its ability to provide more accurate uncertainty bounds on future regional climate than alternatives such as dynamical downscaling of smaller ensembles, or traditional empirical statistical downscaling methods. We also show that dynamical-generative downscaling results in significantly lower errors than popular statistical downscaling techniques, and captures more accurately the spectra, tail dependence, and multivariate correlations of meteorological fields. These characteristics make the dynamical-generative framework a flexible, accurate, and efficient way to downscale large ensembles of climate projections, currently out of reach for pure dynamical downscaling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
玛卡巴卡应助科研通管家采纳,获得50
6秒前
无花果应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得100
6秒前
文昊完成签到,获得积分10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
小墨应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
HeWang应助科研通管家采纳,获得30
7秒前
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
朱朱朱发布了新的文献求助10
11秒前
12秒前
wiara完成签到,获得积分20
14秒前
14秒前
15秒前
zengliangke发布了新的文献求助10
17秒前
wanjingwan完成签到 ,获得积分10
18秒前
大知闲闲完成签到 ,获得积分10
18秒前
整齐白秋完成签到 ,获得积分10
19秒前
波安班发布了新的文献求助10
20秒前
WaveletZ完成签到,获得积分10
21秒前
鄂海菡完成签到,获得积分10
22秒前
悦文发布了新的文献求助10
23秒前
烟花应助薏米人儿采纳,获得30
24秒前
一吃就饱完成签到,获得积分10
24秒前
阿敬完成签到,获得积分10
25秒前
26秒前
29秒前
远_09完成签到 ,获得积分10
30秒前
bc应助zhang采纳,获得20
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776209
求助须知:如何正确求助?哪些是违规求助? 3321725
关于积分的说明 10207313
捐赠科研通 3036940
什么是DOI,文献DOI怎么找? 1666486
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757868