材料科学
兴奋剂
肺炎
碳纤维
纳米技术
医学
内科学
复合材料
光电子学
复合数
作者
Min Zhou,Minxuan Zhang,Jiayuan Feng,Fuying Zhu,Tong Li,Qi Mei,Gen Wei,Hui Wei
标识
DOI:10.1002/adhm.202500725
摘要
Pneumonia continues to be complicated by its progression to acute lung injury (ALI). The onset of ALI is linked to an overproduction of reactive oxygen species (ROS) and a severe inflammatory response. Therefore, the rapid mitigation of ROS and inflammation is crucial in addressing ALI. Concurrently, prompt bacterial elimination is necessary for bacteria-induced ALI. Here, a Co-based carbon nanozyme (CN) with enhanced enzyme-like activities is developed by co-doping with a small amount of Mn (CoMn CN). Compared to cobalt CN without Mn co-doping (Co CN), the active sites of Co and its coordination with N in CoMn CN are slightly altered, resulting in enhanced oxidase (OXD)-, peroxidase (POD)-, superoxide dismutase (SOD)-, and catalase (CAT)-like activities. Given the enhanced enzyme-like activities, its applications for lipopolysaccharide (LPS)- and methicillin-resistant Staphylococcus aureus (MRSA)-induced ALI treatments are explored. CoMn CN demonstrates superior efficacy in both LPS- and MRSA-induced ALI models, effectively combining rapid scavenging of ROS and inflammation with subsequently bacterial elimination. Consequently, a novel type of Co-based CN by Mn co-doping is developed to augment enzyme-like activities, offering significant protective effects against ALI. This study not only broadens the application of Co-based CNs but also shows a promising strategy for ALI therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI