化学
溶剂化电子
环境化学
电子
组合化学
有机化学
物理
水溶液
放射分析
量子力学
作者
Xinhao Wang,Longlong Qiu,Zhanghao Chen,Hanyang Chen,J. J. Wang,Yueqing Zhang,Yichen Xu,Deyang Kong,Ming Zhang,Cheng Gu
标识
DOI:10.1021/acs.est.4c08548
摘要
Per- and polyfluoroalkyl substances (PFAS) make up a class of highly toxic and persistent chemicals that have been widely detected in different environmental matrices. Recently, various hydrated electron-based techniques have been developed to destroy these compounds. However, the molecular mechanisms controlled by different hydrated electron photosensitizers are still unclear. Herein, we investigated the PFAS transformation processes in different hydrated electron-based systems, i.e., UV/Na2SO3, UV/indole, and UV/3-indoleacetic acid (IAA), using different perfluorocarboxylic acids (PFCA) as model compounds. By monitoring the production and decay of hydrated electrons, molecular interactions, and the generated intermediates, we systematically revealed the structure-property-performance mechanism of different systems. In the UV/Na2SO3 system, the disordered attack of hydrated electrons induced rapid destruction for either long or short-chain PFCA. However, the lower hydrated electron efficiency limited the final defluorination ratio. In the UV/indole system, the interaction between indole and PFCA promoted the directed transfer of hydrated electrons, resulting in a significantly higher destruction efficiency for long-chain PFCA than for short-chain PFCA. However, the self-quenching of hydrated electrons in the UV/IAA system led to the ineffective decomposition for all PFCA. This study provides mechanistic insights into the hydrated electron-induced PFAS decomposition processes, which would expand the designing strategies for improving PFAS destruction efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI