Federated Learning for Renal Tumor Segmentation and Classification on Multi‐Center MRI Dataset

概化理论 分割 肾细胞癌 医学 人工智能 威尔科克森符号秩检验 计算机科学 磁共振成像 放射科 核医学 内科学 数学 统计 曼惠特尼U检验
作者
Dat‐Thanh Nguyen,Maliha Imami,Linmei Zhao,Jing Wu,Ali Borhani,Alireza Mohseni,Mihir Khunte,Zhusi Zhong,Victoria Shi,Shujie Yao,Yuli Wang,Nicolas Loizou,Alvin C. Silva,Paul J. Zhang,Zishu Zhang,Zhicheng Jiao,Ihab R. Kamel,Weihua Liao,Harrison X. Bai
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:62 (3): 814-824 被引量:1
标识
DOI:10.1002/jmri.29819
摘要

ABSTRACT Background Deep learning (DL) models for accurate renal tumor characterization may benefit from multi‐center datasets for improved generalizability; however, data‐sharing constraints necessitate privacy‐preserving solutions like federated learning (FL). Purpose To assess the performance and reliability of FL for renal tumor segmentation and classification in multi‐institutional MRI datasets. Study Type Retrospective multi‐center study. Population A total of 987 patients (403 female) from six hospitals were included for analysis. 73% (723/987) had malignant renal tumors, primarily clear cell carcinoma ( n = 509). Patients were split into training ( n = 785), validation ( n = 104), and test ( n = 99) sets, stratified across three simulated institutions. Field Strength/Sequence MRI was performed at 1.5 T and 3 T using T2‐weighted imaging (T2WI) and contrast‐enhanced T1‐weighted imaging (CE‐T1WI) sequences. Assessment FL and non‐FL approaches used nnU‐Net for tumor segmentation and ResNet for its classification. FL‐trained models across three simulated institutional clients with central weight aggregation, while the non‐FL approach used centralized training on the full dataset. Statistical Tests Segmentation was evaluated using Dice coefficients, and classification between malignant and benign lesions was assessed using accuracy, sensitivity, specificity, and area under the curves (AUCs). FL and non‐FL performance was compared using the Wilcoxon test for segmentation Dice and Delong's test for AUC ( p < 0.05). Results No significant difference was observed between FL and non‐ FL models in segmentation (Dice: 0.43 vs. 0.45, p = 0.202) or classification ( AUC : 0.69 vs. 0.64, p = 0.959) on the test set. For classification, no significant difference was observed between the models in accuracy ( p = 0.912), sensitivity ( p = 0.862), or specificity ( p = 0.847) on the test set. Data Conclusion FL demonstrated comparable performance to non‐FL approaches in renal tumor segmentation and classification, supporting its potential as a privacy‐preserving alternative for multi‐institutional DL models. Evidence Level 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的巧凡完成签到,获得积分10
刚刚
Jim luo发布了新的文献求助10
刚刚
刚刚
刚刚
张智信完成签到 ,获得积分10
1秒前
大模型应助cindy采纳,获得10
1秒前
hhh发布了新的文献求助10
2秒前
2秒前
满意雪碧完成签到,获得积分10
3秒前
xue完成签到,获得积分20
3秒前
义气碧菡发布了新的文献求助10
4秒前
念安发布了新的文献求助10
4秒前
5秒前
xlk完成签到,获得积分10
5秒前
Orange应助时代采纳,获得10
6秒前
7秒前
跳跃元正发布了新的文献求助10
7秒前
8秒前
9秒前
Uaena完成签到,获得积分10
9秒前
10秒前
想人陪的靖荷完成签到,获得积分10
11秒前
11秒前
幻烨烨发布了新的文献求助10
11秒前
宇称yu完成签到 ,获得积分10
12秒前
LML发布了新的文献求助10
12秒前
DAII完成签到 ,获得积分10
12秒前
自建发布了新的文献求助10
13秒前
简单的百川完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
香蕉如南完成签到,获得积分10
15秒前
科研通AI2S应助幽默的书本采纳,获得30
15秒前
衢夭完成签到,获得积分10
15秒前
carry发布了新的文献求助10
15秒前
烟花应助飞快的蜡烛采纳,获得10
16秒前
怡然雁风发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5757813
求助须知:如何正确求助?哪些是违规求助? 5511255
关于积分的说明 15388884
捐赠科研通 4895348
什么是DOI,文献DOI怎么找? 2632962
邀请新用户注册赠送积分活动 1581119
关于科研通互助平台的介绍 1536741